
NASA Contractor Report 179441

"J.

Expert Systems for Real-Time
Monitoring and Fault Diagnosis
S.J. Edwards and A.K. Caglayan

(USA-C1-179041) EXPEPT S Y S X f l S PO0 H89-232C 9 kBIL-IIBE LICIIITOblOG ABD € I O U D X A G I O S I S
Einal Beport (Charles Biter h a r l y t i c s)
116 p CSCL 098 Uncllas

G3/63 02064 17

* C O n t W 3 NAS 2-12725
April 1989

National Aeronautics and
Space Administration

NASA Contractor Report 179441

Expert Systems for Real-Time
Monitoring and Fault Diagnosis
S.J. Edwards and A.K. Caglayan
Charles River Analytics Inc., 55 Wheeler Street, Cambridge, Massachusetts 021 38

Prepared for
Ames Research Center
Dryden Flight Research Facility
Edwards, California
Under Contract NAS2-12725

1 989
c

National Aeronautics and
Space Administration
Ames Research Center
Dryden Flight Research Facility
Edwards, California 93523-5000

TABLE OF CONTENTS

Page

1 . INTRODUCTION ... 1
1.1 Real-Time Honitoring and F a u l t Diagnosis 1
1.2 Expert Systems Overview 3
1.3 SumPary of Approach and Results 5
1.4 Outline of the Report 7

2 . DESIRED ATTRIBUTES OF RSP FOR DYNAMIC SYSTEMS 8
2.1 Actuator FDI System . Two Implementations 8
2.2 External Environment Interface 11
2.3 Knowledge Representation Issues 11
2.4 Temporal Reasoning 12
2.5 Integration in to Conventional Software 12
2.6 w l i c and Numeric Reasoning 12
2.7 Real-Time Response 13

3 . RULE SET PROCESSOR KNOWLEDGE REPRESmTATION 14
3.1 A Hybrid Approach to Knowledge Representation 14
3.2 USDL Semantics: Systems 17
3.3 USDL Semantics: Block 18

3.3.1 USDL S a n t i c s : Block - Block Attributes 20
3.3.2 USDL Semantics: Block - Block Lines 22
3.3.3 USDL Sennntics: Block - Block Subsystems 25

3.4 USDL Semantics: Blocktype 27
3.5 USDL Semantics: Declare 29
3.6 USDL Semantics: External 30
3.7 USDL Semantics: Pa th 32
3.8 USDL Semantics: Rulesets 33

3.8.1 USDL Seraantics: Rulesets - Declarations 35
3.8.2 USDL Semantics: Rulesets - Rules 36

1 . RULE SET PROCESSOR USAGE 47
4.1 System Model Development Cycle 47
4.2 System Model Intergretation 49
4*3 USD Simulation Strategy 50
4.4 USD Diagnosis Strategy 51
4.5 RSP Example System 54

RULE
5.1
5.2.

SET PROCESSOR PROTOTYPE ARCHITECTURE
RSP I Architecture Overview
ISD Substructures
5.2.1 ISD Substructure: System Record/* type “sys
5.2.2 ISD Substructure: Block Record/Ma type “coap
5.2.3 ISD Substructure: Blocktype Record/Ada type

.....
t-t”
t” 0 .

~~~ ~ 

‘ctyp t’ ......................................... 

77 
77 
78 
78 
79 

79 

PRECEDING PAGE BLANK NOT FILMED 

. iii . 



5.2.4 ISD Substructure: Declare Item Record/Ada type 
"decl-t" ......................................... 79 

5.2.5 ISD Substructure: P a t h  Record/Ada type "path-t" .. 79 
5.2.6 ISD Substructure: Ruleset Rtxord/Ada type "rset-t" 79 
5.2.7 ISD Substructure: Rule Record/& type "rule-t" .. 80 
5.2.8 ISD Substructure: External Record/Ada type 

"xtrn-t" ......................................... 80 
5.3 Top Level Control ....................................... 80 
5.4 Cowand Processing ...................................... 81 
5.5 ?arsing and Compilation ................................. 8 1  

5.5.1 Recursive Descent Parser ......................... 81 
5.5.2 Lexigraphical Analyzer ........................... 84 
5.5.3 Structure Allocation and Init ialization .......... 84 
5.5.4 Error Management ................................. 84 
5.5.5 Scope Management ................................. 84 
5.5.6 Source L i s t i n g  Processing ........................ 85 

5.6 ISD Interpretation ...................................... 85 
5.6.1 ISD Sequencing ................................... 85 
5.6.2 ISD Expression Evaluation ........................ 86 
5.6.3 ISD Scalar Location and Access ................... 87 

5.7 1/0 Uti l i t i es  ........................................... 87 

6 . CONCLUSIONS AHD REC-NDATIONS .............................. 88 
6 . 1  Conclusions ............................................. 88 
6.2 Recornendations ......................................... 89 

7 . REFERENCES ................................................... 91 

APPENDIX A: USER SYSTEM DESCRIPTION LANGUAGE SYNTAX SPECIFICATION. 94  

APPENDIX B: USER INTERFACE SPECIFICATION ......................... 102 

APPENDIX C: RSP PROMTYPE ADA SOURCE FILES ....................... 108 

. i u -  



LIST OF FIGURES 

Figure 

Figure 3.1 : 

Page 

16 Elements of a System using the User System 
Description Language 

Figure 4.1 : Example System Model: Binary Adder Highest Level 
Representation 

66 

Figure 4.2 : 

Figure 4.3 : 

Ewmple System Model: Binary Adder Intermediate 
System Level Representation 

67 

Example System Model: Binary Adder (And-System) 
Lowest System Level Representation 

68 

Figure 4.4 : 

Figure 4.5 : 

Example System Model: 
Lowest System Level Representation 

Binary Adder (Fork-System) 69  

Example System Model: 
Lowest System Level Representation 

Binary Adder (Indicator-System) 70  

Figure 4.6 : 

Figure 4.7 : 

Example System Model: 
Lowest System Level Representation 

Binary A d d e r  (Or-3-System) 71 

Example System Model: 
Lowest System Level Representation 

Binary Adder (Xor-System) 72 

73 Figure 4.8 : Example System Model: 
Lowest System Level Representation 

Binary Adder (Value-Module) 

Figure 4.9 : 

Figure 4.10: 

Example System Model: 
Lowest System Level Representation 

Binary Adder (Result-Module) 7 4  

75 Example System Model: BiMry Adder (Sum-Generation- 
Module) Lowest System Level Representation 

Figure 4.11: Example System Model: 
Module) Lowest System Level Representation 

Binary Adder (Excess-Generation- 76 

- v -  



LIST OF TABLES 

Table 

Table 2.1: 

Table 2.2: 

Table 3 . 1 :  

Table 3.2: 

Table 3 . 3 :  

Table 3 . 4 :  

Table 5 . 1 :  

Attributes of Actuator FDI Program (FORTRAN Version) 8 

Attributes of Actuator FDI Expert System (CLIPS Version) 9 

USD Resources and Functions 1 8  

Elements of USD Resources 20 

USD Language Operators 39 

USD Language Ruleset Statements 4 0  

RSP Frototype Functions 82 

- v i -  



1. INTRODUCTION 

I '  

Ii 

This report summarizes the r e s e r c h  and development results of the SBIR 
Phase I study erltitled "Expert Systems f o r  Real-Time Monitoring and Fault 
Diagnosis" supported by NASA Dryden under Contract N o .  N A S 2 - 1 2 7 2 5 .  The major 
aim of this study is the definition, design and prototype demonstration of a 
kn3wledge compiler concept which retains the desirable attributes of expert 
systems during the developaent stage while producing an efficient conventional 
embedded code for real-time onboard expert system applications. In this 
study, we generalize this concept into a Rule Set Processor (RSP) method 
allowing the specification of topological and procedural application knowledge 
for time-critical applications, the interactive development of an expert 
system based on this specification, and the integration of a compiled version 
of this knowledge into conventional time-critical application software. For 
physical systems composed of interconnected elemental dynamic objects, RSP 
provides a knowledge representation facility which allows the specification of 
topological information about the physical interconnection among these 
elemental dynamic objects and procedural information about the functional 
dynamic behavior of the dynamlc elements. Moreover, R S P  provides a 
hierarchical dynamic representation mechanism a l l o w i n g  m u 1  t i p l e  
representations of a subsystem at several levels of abstraction. Under the 
Phase I effort, a preliminary specification of the RSP design has been 
completed and a protot-pe RSP implementation has been developed in Ada. 

1.1 Real-Time Monitoring and Fault Diagnosis 

Real-time fault monitoring and diagnosis algorithms are crucial in 
building highly relizble systems. These sof tware-implemented hardware fault 
tolerance algorithms heve been used to increase system reliability for a given 
recirlndant bardware configuration, or t o  reduce hardware redundancy for a given 
reliability figure. Such algorithms have been applied to the detection, 
isolation, and compensation of failures in various components (sensors, 
actuators, valves, linkage, circuitry, etc. 1 in electromagnetic, electronic, 
mechanical, a d  hydraulic system. For instance, BIT (Built-In-Test ) for on- 
l i n e  diagnosis of Line Replaceable Unit's (LRU's) and failure detection and 
isolation (PDI) algorithms for on-line diagnosis of sensor and actuator 
failurr-s are ccamnly used on current generation aircraft. 

The major problem in current real-time fault monitoring systems is the 
h i g h  rate of false alarms, i.e. "retest OK" and "cannot duplicate" conditions 
(Malcolm and Highland 1981). One of the major reasons for these deficiencies 
is the limitations i n  tire =de1 assumptions that the monitoring algorithm is 
based upon. These limitations are , in turn, due to the inaccuracy of the 
analytic representation on which the BIT/FDI algorithm is based on. 

Faced with the high rate of false alarms in a conventional approach, a 
monitor designer has only one choice: increase the accuracy of the numerical 
model on which the monitoring algorithm design is based. This approach 
necessarily increases the complexity of the monitoring algorithm. Expert 
systas offer an alternative approach to this problem: model the deficiencies 
cf t h e  monitoring algorithms using a rule-based approach. 

Another major reason for these deficiencies is that most B I T / F D I  
ioplszentati3ns do not make use of the information about the unit's 
operational environment (e.g., status of other interconnected units, 

- 1 -  



temperature, RF interference,  power supply conditions) and the operating 
conditions for the vehicle that the u n i t  i s  located i n  t e .g . ,  a i r c r a f t  
maneuver, vibration), 

The conventional approach to fau l t  diagnosis system design does not 
provide a representation capability allowing the easy integration of such high 
level knowledge (e.g., topological s t ructure ,  maintenance h i s to ry ) .  Here 
again,  expert  systems offer an al ternat ive approach allowing the easy 
integration of such knowledge into the monitoring system design.  For 
instance, for non-real-time fault diagnosis applications, expert system based 
approaches have been denonstrated i n  the maintenance diagnostics area (Davis 
1988 1. 

Qualitative reasoning based on symbolic representa t ion  of domain 
knowledge applied by expert systems can enhance the performance of fault/event 
nunitoring systems. For instance, when used as a supervisory decision maker, 
such an expert system can ignore the fa i lure  indication of the underlying 
algorithm when deemed to be a false alarm and declare a fa i lure  indication 
when deemed t o  be a missed de tec t ion  a s  d i c t a t e d  by the  Rule Base. 
Furthermore, such research would lay down the rules of integrating expert 
systems to the design of new monitoring systems. 

The successful application of expert systems technology to onboard f a u l t  
diagnosis problems i n  the aerospace domain requires the developent of expert 
systems that operate i n  real-time. Prob lem solving in a real-time environment 
i s  d i f fe ren t  from that faced i n  conventional applications of expert systems 
which presuppose a h i g h  degree of human interaction d u r i n g  the problem solving 
process. Further, the powerful explanation feature of the inference mechanism 
i n  an expert system i s  likely to be neither required nor desirable during on- 
l i ne  execution of fault  diagnosis algorithms. We thus see a number of unique 
attributes of real-tune expert systems-based problem solving, i n  t h e  f a u l t  
diagnosis area, including: 

- Data and the associated facts deduced from the data are not s ta t ic  but 
dynamic. Hence, problem solving requires temporal reasoning to handle 
the unplications of event sequencing and temporal interdependence. 

- An expert system for real-time fault diagnosis should interface with 
onboard sensor measurement data and other conventional real-time 
software programmed using a procedural language. 

- Problem solving i n  a real-time fault diagnosis environment requires 
both numeric and symbolic reasoning. Hence, an integrated numeric and 
symbolic knowledge representation is needed i n  any model of the  domain 
knowledge. 

- In  a real-time fault diagnosis domain, problem solving requires the 
handling of unscheduled events on an interrupt basis according to  
their unportance. Hence, a time-varying attention allocation strategy 
i s  needed i n  solving a problem for such a real-time environment. 

- Finally, a guaranteed response time i s  required for problem solving i n  
rn a real-time faul t  diagnosis environment. Therefore, a decision 
scrategy producing the best possible answer w i t h i n  the deadl ine  
cmsfraints 1s required. 

- 2 -  



1.2 Expert Systems Overview 

An e x p e i t  system i s  a computer progran! that can perform a t a s k  normally 
r e q u i r i n g  t h e  r e a s o n i n g  a b i l i t y  of a human e x p e r t  ( S t e f i k  e t  a l .  1 9 8 2 ) .  
Expe r t  systems are h ighly  spec ia l ized  according t o  their a p p l i c a t i o n  domains. 
Recent i n t e r e s t  i n  a r t i f i c i a l  i n t e l l i g e n c e  i s  main ly  due t o  t h e  success of 
e x p e r t  s y s t e m s  i n  v a r i o u s  a p p l i c a t i o n s :  SOPHIE i n  computer ass is ted 
i n s t r u c t i o n  (Brown e t  a l .  197 4 ) ,  M Y C I N  i n  medical d i a g n o s i s  ( S h G r t  l i f  f e 
1976! ,  PROSPECTOR i n  o i l  e x p l o r a t i o n  (Duda e t  a l .  19781,  and DENDRAL i n  
biology (Buchanan and Feigenbaum 1 5 7 8 ) .  Current expert  sys tems research f o r  
time-critical aerospace app l i ca t ions  include Experimental Expert F l i g h t  S t a t u s  
Monitor (EEFSM) i n  f l i g h t  con t ro l  systems monitoring (Regenie and Duke 1985!,  
( D u k e  and Regen ie  1 9 8 5 ) ,  (Disbrow e t  a l .  1 9 8 6 ) ,  F a u l t f i n d e r  for bu i ld ing  
d i a g n o s t i c  exper t  systems i n  onboard a i r c r a f t  a p p l i c a t i o n s  (Palmer e t  a l .  
1 9 8 7 ) ;  ( S c h u t t e  e t  a l .  1 9 8 7 ) ,  (Abbott et a l .  1987) ,  and FIXER for automatic 
f a i lu re  mnagement i n  Space S ta t ion  app l i ca t ions  (Malin 1987).  

Althougfi  any  program s o l v i n g  a p a r t i c u l a r  problem may be considered to 
exhibi t  exper t  behavior,  exper t  systems are d i f f e r e n t i a t e d  from other programs 
a c c o r d i n g  to  t h e  manner i n  which the  app l i ca t ion  domain specific knowledge i s  
structured wi th in  a program. In p a r t i c u l a r ,  exper t  system programs p a r t i t i o n  
the i r  knowledge i n t o  t h e  f o l l o w i n g  three blocks: Data Base, R u l e  Base, and 
Inference  Engine. 

I n  o t h e r  words, t h e  k n o w l e d g e  about  t h e  a p p l i c a t i o n  d o m a i n  i s  
compartmentalized rather than distributed throughout  t h e  program. The  Data 
Base c o n t a i n s  the facts a b u t  t h e  app l i ca t ion  domain. The Rule Base con ta ins  
the set of rules spec i fy ing  how fac ts  i n  t h e  Data Base c a n  be combined t o  
g e n e r a t e  new facts and form conclusions.  The Inference Engine determines t h e  
coi ts t rnct  of reasoning i n  t h e  a p p l i c a t i o n  of t h e  r u l e s .  For i n s t a n c e ,  t h e  
d i a g n o s t i c  sys t em M Y C I H  s t a r t s  f i o m  t h e  symptom facts i n  order to  f i n d  the 
condi t ions  causing t h e  symptom. T h i s  m ~ e r  of reasoning is  called "backward 
c h a i n i n g .  " I n  c o n t r a s t ,  "forward c h a i n i n g "  i n f e r e n c e  s t a r t s  w i t h  t h e  
established facts to  f i n d  a set of cons i s t en t  conclusions.  

T h e  p a r t i t i o n i n g  of app l i ca t ion  domain knowledge in exper t  systems allow 
t h e  incremenral a d i t i o n  of rules to  t h e  R u l e  Base w i t h o u t  major r e v i s i o n s  t o  
t h e  pr3gram.  Moreover, the  expert  system can explain t h e  reasoning cha in  by 
record ing  the  rules as they are  appl ied.  

While e x p e r t  sys t ems  have been t r a d i t i o n a l l y  b u i l t  using c o l l e c t i o n s  of 
rules based on e m p i r i c a l  a s s o c i a t i o n s ,  i n t e r e s t  has  grown r e c e n t l y  i n  
knowladge-based e x p e r t  systems which perform reasoning from f i r s t  p r i n c i p l e s  
such as those based on r e9 resen ta t ions  of structure and  f u n c t i o n  knowledge.  
For i n s t a n c e ,  an exper t  system for d i g i t a l  e l e c t r o n i c  systems t roubleshoot ing  
i s  baing developed by using a structural and behavioral d e s c r i p t i o n  of d igi ta l  
c i r c u i t s  ( D a v i s  et  a l .  1982) ,  (Davis 1983, 1984, 1987). Q u a l i t a t i v e  Process 
(QP) theory (Forbus 1982, 1984, 1987, 1988) is another  approach  which allows 
r e a s o n i n g  from f i r s t  p r i n c i p l e s  using t h e  representa t ion  of causal behavior 
based on a q u a l i t a t i v e  r ep resen ta t ion  of numerical knowledge u s i n g  p r e d i c a t e  
c a l c u l u s .  Q P  theory  i s  a f i r s t  crder p red ica t e  ca l cu lus  def ined  on objects 
p a r a m e t e r i z e d  by a q u a n t i t y  c o n s i s t i n g  of two p a r t s :  an amoun t  a n d  a 
d e r i v a t i v e ,  each represented by a s ign  and mgnitude. In Q u a l i t a t i v e  Process 
theory,  phys ica l  systems are described i n  terms of a c o l l e c t i o n  of objects ,  
t h e i r  p r o p e r t i e s ,  and t h e  r e l a t ionsh ips  among them witfun the framework of a 
f i r s t  order p r e d i c a t e  calculus. 

- 3 -  



I n  applying QP theory to  physical dynamic systems such as aircraft fault 
diagnosis problems, the bottoms-up approach i n  getting the qual i ta t ive rules  
from low levels of elemental descriptions can possibly yield erroneous results 
at higher levels (Govindara] 1 9 8 7 ) .  I n  contrast, f i n d i n g  qualitative rules a t  
h i g h  l e v e l s  using a complete knowledge of the system via reduced order 
modelling would not be susceptible to such problems. Consider the following 
exampie fo r  a QP description (where the magnitudes have been onutted for 
clari ty) of altitude hold and autothrottle subsystems on an aircraft: 

I f  altitude drops, then the altitude hold system pitches the aircraft up. 
I f  the aircraft pitches up, then the aircraft speed decreases. 
I f  the a i r c ra f t  speed decreases, then  the auto throttle increases thrust 

If  the thrust goes up, then the aircraft speed increases. 
after a time interval. 

Note that the sequence of qualitative rules are the k i n d  of explanations that 
a knowledge engineer i s  l ikely to  get when questioning an PCS designer. 
Similarly, these rules can be obtained by a system theoretic approach w i t h  
reduced order modelling. I n  th i s  example, Qualitative Process theory can 
explain, through symbolic reasoning, the oscillations i n  sink rate and thrus t  
i f  the altitude-hold and auto throttle subsystems are not properly designed. 
In such a case, when the aircraft reaches i t s  desired a l t i t ude ,  the t h r u s t  
would be higher than the required trim value w i t h  resultant overshoots i n  both  
altitude and sped.  This event would f i r e  another set of rules, and the cycle 
w o u l d  continue. H o w e v e r ,  i t  i s  n o t  clear tha t  one can get  the  same rules a t  
this level of abstraction i f  we apply QP approximation t o  an elemental level 
such as f l i g h t  control law, aircraft dynamics, actuators, etc. 

For fault diagnosis i n  d ig i t a l  c i r cu i t  applications, Davis advocates 
reasoning from f i r s t  principles starting wi th  simple hypctheses, keeping track 
of simplifying assumptions made, and using multiple representations (e .g . ,  
both physical and functional representation of a digital  circuit)  (Davis et 
a l .  1982) and (Davis 1983, 1984, 1987). Multiple representation approach i s  
analogous to  Rasmussen‘s hierarchical knowledge representation a t  several 
levels of abstraction (Rasmussen 1985) used i n  modelling human problem solving 
strategies for cunplex system. 

Rasmussen introduces an abstraction hierarchy i n  modelling human f a u l t  
diagnostic s t ra tegies .  This hierarchy i s  two dimensional. The f i r s t  i s  the 
functional layers of abstraction for the physical system: functional purpose, 
abstract function, generalized function, physical function, and physical form. 
The second i s  the structural layers of abstraction for the physical system: 
system, subsystem, module, submodule, component. Using a qual i ta t ive 
approximation method based on a simplified version of such a functional 
hierarchy, a t ra ining system for marine engineers cf a steam power plant has 
been developed by Govindaraj (1987) .  

Current commercially available expert system building tools (shells)  are 
not generally applicable t o  b u i l d i n g  expert systems f o r  onboard f a u l t  
diagnosis applications due to the following reasons (Laffey et a l .  1988): 1) 
the shells are not fast enough; 2 )  the shells have insufficient faci l i t ies  for 
temporal reasoning; 3 )  the shells are not easily embeddable into conventional 
n i g h  l eve l  programming languages and most cannot  run  on numeric 
micro@rocessors used for embedded app l i ca t ions ;  4 )  t he  she l l s  have 
insufficient fac i l i t i es  for devoting attention to significant events; 5 )  the 
shel ls  a r e  not designed to accept onboard sensor data; 5) the shells have no 

- 4 -  



integration with a r a l - t a e  clock 2nd do P 3 t  &handle hardware interrupts ;  and 
7 )  t he  shel1.s ca.vt3t pronide ZcuaZanCeed response times. 

A s  discussed L A  ! G u ? t ~  1985), D G S t  ! r ' terpretive expert system she l l s  
spend SO$ of the i r  time in mtchinq the ctirrsnt facts against the antecedent 
of rules i n  their rule base. Cience, an expert system development approach 
whers t h e  i n t e r p r e t i v e  p:ocessrng i s  performed o f f - l i ne  would o f f e r  a 
substantial execution time rrqrovement . Similarly, the execution e f f ic iency  
i s  a strong function of the knowledge representation f ac i l i t i e s  employed i n  
the expert system s h e l l .  For inscancs, an approach based on m u l t i p l e  
h i s a r c h r c a l  r eprcsentations of a physrcai system and using forward chaining 
would have a lrnsar execution time complexity as compared t o  a ru l e  based 
system w i t h  forward chaining having expcnential time complexity. 

For ease of i n t e g r a t i o n  i n t o  convent ional  high l e v e l  programs, 
programming Language of the expert system shell i s  an important choice. For 
irlstance, the choice of a piogramming language commonly used for embedded 
c p p l i c a t i o n  such as  Ads or C would be advantageous from an in tegra t ion  
viewpoint. tioreover, sucn an expert system would be e a s i l y  portable  t o  
micropracessor s commonly LIS& for embedded applications (e.g., 1750A, 80386, 
66C20). Moreover , t h e  l aguage  constructs for handling real-time i ssues  
( t a s k L n g ,  interrupt servicing, exception handling) would be available to such 
an exper t system development tcol.  

A s  discussed by [Laffey e t  a l .  1988), mere are two formal definit ions 
for real-time expert systems: the expert system i s  said to  exhibit real-t ime 
performance of a i  i t  is predictzhiy fast enough for t h e  process being served, 
or 0) i f  i t  can provide a response w i t h i n  a given time limit. 

For rea:-tims f a u l t  diagnosis applications,  even if an expert system 
s s t i s f i e s  k t h  of these premises, i t  w o u l d  s t i l l  not be s u f f i c i e n t  for 
incltisron i n  an embecud application since t h e  quality of the response would 
detemine i t s  inclusion i n  an onboard time-critical system. We bel ieve t h a t  
the followirtq i s  an appropriate c r i t e r ion  for real-time expert systems for 
emDedded e p p l i  zat ions:  an expert system i s  said t o  e x h i b i t  r e a l - t i m e  
perfcrmance 12 t h e  exacucion speed of a srandalone conpiled version of the 
exper: system €or a fixed a?plicatior, is canparable t o  t h e  speed of a real-  
time conventiunzl progrem w r i t t e n  50 solve t h e  specific application at hand. 

T i , ?  in:acratioc of 2 ) i P e i i  s y s t e m s  technology i n t o  t i m e - c r i t i c a l  
appl icat ions p:-esents new challenges due to  the  unique at t r ibutes  of these 
3ppiLtaclons. Par instancet most expert systems have usually been implemented 
as  sLanda1o:ie ccmputer programs that  presuppose a high degree of human 
interaction w i l l  be available during the probla  solving process. Whi le  t h i s  
aFproach i s  q u i t e  sa t i s fac tory  for lnany naturally interactive applications, 
imrneeiate human interact ion i s  neither avai lable  nor des i rab le  i n  time- 
c r i t i c a l  a v i o n i c s  monitor ing a p p l i c a t i o n s .  Similarly,  t h e  powerful 
explanaticn fea ture  of t h e  inference mechanism i n  expert systems i s  a l s o  
neither required nor desirable during on-line execution i n  these applications. 

' . 3  S i x w r y  c f  kpgxmcfi a d  Resuits 

A s  discussed by Ijuke el: a:. ( 1 9 8 6 ) ,  what is needed for real-time onboard 
excert systezis development is a kiiowledge compiler f o r  conve r t ing  t h e  
developed knowledge h s e  rrrto a convzntional program, t h u s  retaining the 



desirable attributes of the expert systems during the development stage while 
producing an efficient conventional code for a target embedded microprocessor. 
In this study, we generalize this concept into a Rule Set Processor (RSP) 
method allowing the specif ication of topological and procedural application 
knowledge for time-critical applications, the interactive development of an 
expert system based on this specification, and the integration of a compiled 
version of this knowledge into a conventional time-critical application. 

The target application domain of our expert system development tool is 
real-time fault diagnosis applications for physical systems composed of 
interconnected elemental dynamic objects. Our expert system shell allows 
multiple hierarchical representations of such dynamic systems at several 
levels of abstraction. Our work generalizes Davis' approach to real-time 
dynamic systems in that the RSP allows the definition of elemental dynamic 
objects such as an integrator, actuator, sensor, etc. and specification of 
both the physical interconnection among these elements and their functional 
dynamic behavior. Hence, our physical system model generalizes the 
conventional functional dynamic system representation (state-space, transfer 
function, etc. ) to include tcpologicai representation (physical 
interconnections, structural description). In addition, RSP includes an 
inheritance mechanism such that a dynamic object can be defined in terms of 
previously defined dynamic elements. Moreover, RSP provides a hierarchical 
dynamic representation mechanism aliowing multiple representations of a . 
subsystem at several levels cf abstraction associated with each element. 

Under the Phase I effort, a preliminary specification of the RSP design 
has been completed. In addition, a procotype implementation of t h e  RSP has 
been programmed using Ada. The prototype RSP includes the BNP specification 
of the User System Description Language (USDL), a parser, and an interpreter. 
The following 1s a brief functional sumnary of these major RSP components: 

- User System Description Language (USDL) supports both topological 
knowledge ( i  .e., system, blocks, paths, externals) and procedural 
knowledge (i.e., ruleset, rules, expressions) about dynamic systems. 

- RSP I parser translates the USDL source after a lexical, syntactic, 
and semantic check into an Internal System Description (ISD) suitable 
for interpretation. 

- RSP I interpreter interactively interprets the ruleset determined by 
the selected user comnand (e.g., smulate, diagnose) using the error- 
free ISD. 

The proposed integration of expert systems technology with existing time- 
critical applications would provide a significant upgrade potential of 
existing monitoring systems. Hb?y time-critical applications today have been 
solved by use of a conventional programing language with the human supplied 
expertise translated by a Frogramming team. Often, the solution for a time- 
critical problem is also based on earliar conventional language treatments of 
a similar problem - a method employed in part due to the high cost of original 
development and testing with new systems, new human experts, and new 
programming staff. Another goal of our investigation is to demonstrate an 
alternative approach to the implamentation of an expert system - an approach 
that allows for the integration of curreilt expert system technology with 
existing titie-critical appLication solutions. 

- 6 -  



1 . 4  Outline of the 9epart 

I n  C!apter 2, w 2  outline :he desirakla attribution of a raal-time expert 
system development Environment i n  the ccntext of an actuator fa i lure  detection 
and isolation system example. The RSP knowledge representation approach and 
the USDL semantics a re  discussed i n  Chapter 3 .  In Chapter 4 ,  we discuss the 
expert system development cycle using the RSP and provide an example. Chapter 
5 contains the  architecture and software components of RSP. The report ends 
w i t h  Chapter 6 providing the conclusions and recammendations. 

. 

- 7 -  



2 .  DESIRED A' ITRIBUTES OF RSP FOR DYNAMIC SYSTEMS 

In t h i s  chapter, we discuss the desirable a t t r ibu tes  of a Rule Set 
Processor architecture i n  the context of an actuator failure detection and 
isolation ( P D I )  system example. The selected sample application i s  from a 
Se1.f-Repairing F l i g h t  Control System (Caglayan et a l .  1987). The objective Of 
the actuator FDI system i s  to detect, isolate and classify actuator fa i lures  
on the Control Reconfigurable Combat Aircraft. The actuator FDI decisions are 
used by a reconfiguration strategy to reconfigure the aircraft  f l i g h t  control 
law a f t e r  impairment to provide safety of f l i g h t  and to  recover maximum 
performnce. Here, we discuss the various implementations of such an FDI 
system: a procedural language implementation, a rule-based expert system 
implementation and a hybrid implementation. 

2 . 1  Actuator FDI System - Two Implementations 

The actuator FI?I system for the CRCA application has been implemented a s  
two standalone applications: one as a single FORTRAN program dr iven  by the 
CRCA smulation through a f i l e  interface, and second as  a rule-based expert 
system using C L I P S  (Giarratano 19873 driven by the CRCA szmulation through a 
similar f i l e  interface. 

CLIPS  - C Language Integrated Production System - is a tool for the 
developent of rule-based e x p e r t  systems. CLIPS provides a p o w e r f u l  ru le  
syntax and an inference engine basad on the R e t e  match algorithm (Porgy 1982).  
We have selected CLIPS for this example since i t  i s  written i n  C,  embeddable 
to other programs written i n  different  languages (C, Ada, PORTRAN),  and 
portable across various hardware platforms. Here, we summarize and compare 
t h e  two implementations. 

The implemented actuator PDI algorithm functions as  follows. A t  each 
sampling in s t an t ,  the actuator comnand and surface position measurements are 
read i n .  Us ing  a fixed length moving window o f  the  su r face  p o s i t i o n  
measurements, estimates for the actuator command and r a t e  of change a re  
computed. If  t h e  computed rate i s  greater that the actuator rate limit, or i f  
t h e  actuator position measurement exceeds the maximum or minimum position 
limits, or i f  the difference between the actual and estimated command i s  
greater than a specified threshold, then the actuator i s  declared as failed. 
In case of a fa i led  sensor, the actuator fa i lure  i s  c lass i f ied a s  e i ther  
runaway or floating or stuck through f u r t h e r  tests.  

Table 2 .1  Attributes of Actuator FDI Program (FORTRAH Version) 

Source Ccde ( N O .  of Lines) Executable Image (Kb) 

In  i t ia i i za t i on/ 
run-time 1/0 
Est iim t i on/ FD I 

4 0  

198 - 
8 

13 - 
Total 23 8 2 1  

- 8 -  



Table 2.2 Attribu:fs of Actuator FDI Expert System (CLIPS Version) 

. 

Initialization 13 
Run-time 11% 8 
Est 1.- t ion 8 

19 FD I - 

Executable Image (Kb) 

Total 48 352 

Tables 2 . 1  and 2 . 2  show a ccmparlson of two implementations. As seen 
from the tab les ,  the FORTRAN version consis ts  of 238 l i nes  of code. I n  
con t r a s t ,  the C L I P S  version contains 40 rules. The executable image of the 
FORTWN version is 2 1  Kb whereas the rule-based expert system equivalent is 
3 5 2  Kb. Since  t h e  standalone run-time CLIPS i s  278 Kb, the ru l e  base 
introduces an additional 7 4  Kb. Since increasing software s i ze  imposes 
addi t ional  weight requirements on an a i r c r a f t  (more memory, wires, power, 
etc.  ) ,  the comparison underscores the imprtance of generating a t i g h t  expert 
system ccde for anbedded applications. 

Ficure 2 . 1  shows the rule for asserting an actuator failure based on the 
difference between actual and estimted actuator commands. Figure 2.2 shows 
the rule for asserting a locked actuator fa i lure  based on whether the actuator 
is following the local angle of attack or not. 

(defrcle check-for-failure 
( uwwe ?umve-val) 
( yn ?ym-val) 
ccondif ?co&it-val) 
(cmdth; ?cmdthr-val) 

( surf ace ?count ?name) 
?actuator <- (actuatcr surface ?name 

loop ?count) 

status ok 
tick 1 
time ?va 1 
sp - s en sor ? sp s 
sp-ccr;lrra.nd ? spc 
ps-lim-mx ?plm 

rate-limit ? r l )  
pas-lim-m ?plm 

( t e s t  (>= ( *  ?cadif-val ? c d i f - v a l )  ( *  ?cnrithr-Val ?cndthr-val))) 

( re t rac t  ?actuator) 
(f2rintcut t "Failure detected: " ?name c r l f )  
(asssr t  (actdator surface ?name 

=> 

status failure 
tick 1 
tune ?Val 
sp-sensor ?sps 
sp-conrla.nd ? 5 pc 
pos-lm-mx ? p l m  
pos-lim-m ?plmn 
ia te - l imt  ? r l ) )  

(assert  (sfapos ?name ?umave-vzl)) 
(bind Ssfaifa-Val ( ?ym-Val 57.29578018) ) 
i assert (sfalfa  ?name ?sfalfa-val)) ) 

Figure 2 . 1 :  Rule for Asserting an Acuator Failure 
- 9 -  



(defrule if-failure-check-locked 

?check <- (check-isolation) 
( surf ace ?count ?name) 
?actuator <- (actuator surface ?M- 

(loop ?count) 

status failure 
tick 1 
time ?va 1 
sp-sensor ?sps 
sp-cocmpand ? spc 
pos-lim-mx ?plmx 
p s -  lim-m ?plm 
rate-limit ? r l )  

(alferr  ?alferr-Val) 
(alfthr ?alfthr-Val) 
( tes t  (> ( *  ?alferr-Val ?alferr-Val) ( *  lalfthr-val ?alfthr-Val))) 

(retract ?actuator) 
(retract ?check) 
(assert (actuator surface ?name 

=> 

status locked 
tick 1 
time ?Val 
sp- sensor ? sps 
s p - c o m d  ?spc 
pos-lim-mx ? p h  
pos-lim-mn ?plmn 
rate-limit ? r l ) )  

(fprintout t "Actuator locked: " ?name c r l f )  
(assert ( fa i l -cont ) ) )  

Figure 2.1: Rule  for Asserting an Actuator Failure 

I n  terms of execution speed8 the CLIPS version was about 25 times slower 
than the FORTRAN version. Since the efficiency of the CLIPS code was not 
optimized, the execution speed performance can be further improved using the 
standard i t e r a t ive  techniques for improving the efficiency of production 
systems (Braunston et a l .  1986). We suspect that any improvement beyond a 10 
to  1 execution speed r a t io  would be hard to accomplish due to the overhead 
associated wi th  pattern matching, and fact assertion and retraction. 

Although not implemented, t he re  a r e  a t  least  two logical hybrid 
implementations of this actuator FDI example. The f i r s t  one would be using 
the FORTRAN code for reading the measurements and computing the various 
estimation parameters (sequential algorithmic tasks performed a t  every 
sampling in s t an t )  as user defined functions i n  CLIPS. This would reduce the 
number of rules by a b u t  5018 increase execution speed over t h e  standalone 
CLIPS version with an accompanying slight decrease i n  program size. The other 
alternative would be the replacement of PDI code i n  the FORTRAN version with a 
C L I P S  c a l l  for performing the PDI decision. We suspect that the program size 
and execution speed of this hybrid implementation would be comparable to  the 
f i r s t  one. 

- 10 - 



2.2 Exterral Environment 1n:erface 

Real-time fault mozicorinc; systs!s halie t3 read in data at a fixed rate 
from a set of sensors t e . g . ,  PCS outputs, surface position RVDT's, 
dif f erentiai pressure transducers, BIT results, accelerometers, rate gyros, 
etc.). Hence, a reai-time expert system for onboard applications should 
support efficient input and display data functions. Since conventional expert 
systsms development presuppose an interactive environment, an efficient 
repetitive data read-in and assignment facility is not available in m s t  
expert system shells. 

2.3 Knowledge ReFresentation Issues 

A s  typified by the simple actuator FDI example, real-time onboard fault 
diagnosis systems require a hybrid knowledge representation allowing both 
stiuctural declarative knowledge and sequential procedural knowledge. For 
instance, in the actuator PDI example, the description of the physical 
interconnection between the FCS, actuator and surface position measurement 
sensor requires a topological knowledge representation capability. Such a 
symbolic representation is ideally suited for an expert system implementation. 
In contrast, sequential command estimation algorithm performed at each 
sampling interval requires a proceaural knowledge representation facility. 
Ideally, a real-time expert system shell should support both of these . 
.knowledge representation facilities. 

Since i t  was originally developed using a procedural programming 
lan,-uage, there is an important knowledge representation construct missing 
from the actuator F C I  example: namely, the hierarchical representation of a 
pnysiczl system at several levels of abstraction. Such a structural knowledge 
representation facility is usually available in hybrid expert system shells 
?\.hich allow object defiiiitions with inheritance relationships. In this 
sxample, such a hierarchical representation of an actuator can take the 
following form: At the highest level, the system can be described by three 
objects: actuator command input post, actuator subsystem and surface 
rnteasuremult RVDT.  A t  this level, actuator subsystem model can, for example, 
be a first order model. At the next lower level of hierarchy, actuator 
susbystem can be further decomposed i n t o  input  limiter, mode s e l e c t o r ,  
mechanical bias, position limiter, and a first order dynamic system with rate 
limiting . 

Apart from the evidence of similar diagnosis strategies employed by 
hmans, such a hierarchical representation would enable a faster reasoning 
rcecnanism than a flat rlssciiption where all elamental dynamic objects have to 
be tested at each iteration. Moreover, in such an inference tree, a failure 
declaration at a higher level may deemed to be a false alarm at a lower level 
based on a more accurate physical system model. Ideally, a real-time expert 
system she1 1 fo r  onboard applications should support hierarchical knowledge 
representation at various levels of abstraction so that both top-down 
diagnosis, bottoms-up simulation or hyhrid failure diagnosis strategies can be 
employed. 

- 11 - 



2 . 4  Temporal Reasoninq 

In  real-time systems, an expert system has to reason a b o u t  past, present, 
and future  events. Moreover, the temporal sequence of events has to be 
accounted for as  well.. I n  the theory of temporal reasoning, a number of 
formulations have been developed (Shoharn 1988).  The two most important ones 
are based on, f i r s t ,  assertions a b c u t  time intervals and, second, assertions 
about time points.  For instance, i n  an interval based formalism, one deals 
between interval relations such as before, after,  overlaps, starts,  f in i shes ,  
e t c .  Such a temporal iogic propagates constraints about intervals  by 
transitivity. 

Most expert system shells do not support such temporal reasoning. Only 
i n  hybrid expert systems supporting dynamic objects, objects and the i r  l inks 
to classes can be modified a t  runtime. I n  the actuator FDI example, t h e  
temporal reasoning is implicitly contained i n  the length of the moving window 
over which the masurements are saved. I n  general, every physical model of a 
physical dynamic system would dictate a different time interval for which the 
i n p u t  and output measurements have to be saved. For instance, for an auto 
regressive moving average description, such a choice i s  expl ic i t ly  s ta ted.  
Ideal ly ,  an expert system shell should support the specification of the menrory 
attribute of a dynamic object ( t he  time interval  over which the reasoning 
a b c u t  a faillt has to be performed). 

2.5 I n t e g r a t i o n  i n t o  Conventional Software 

Since most current embedded applications d ic ta te  either C or Ada, an 
expert system shell written i n  one of these languages would allow an easy 
integration in to  conventional software. CLIPS i s  a n  example of such a shell 
written i n  C. I t  i s  completely embeddable i n  other applications written i n  
FORTRAN, Ada, and C by bu i ld ing  an appropriate interface package. In a real- 
time onboard expert system, such an interface should be accomplished without 
incurring any significant computational overhead. 

2 .6  Symbolic and Numeric Reasoninq 

I n  the actuator PDI example, the reasoning about the interconnections 
between the actuators and surface position sensors need a topologica l  
knowledge representation which requires symbolic reasoning. Other higher  
leve l  information s u c h  as hydraulic system test  results, maintenance history 
about a specif ic  u n i t  can be easily incorporated into such a representation, 
thus allowing additional reasoning power for  asserting malfunctions. I n  
contrast ,  the expressions on the le f t  hand side of if-then-else rule i n  the. 
actuator PDI system involve extensive mathematical computations ( e . g . ,  
computation of the command estimate).  This example i s  a f a i r l y  simple 
application; i n  most systems, more elaborate mathematical computations 
(involving, for instance, operations w i t h  matrices vectors, etc.) would be 
needed. Hence, a,. ideal expert system shel l  for onboard real-time expert 
system app l i ca t ions  should support extensive domain algebra i n  rule 
expressions . 

- 12 - 



2.7 R-1-Time Response 

An actuator PDI systom such as the example described, has t o  exhib i t  
s t r i c t  real-t ime performance. For instance, i n  an unstable a i rcraf t  such as 
the X-29, such a system has t o  produce the correct answer i n  a t  most two 
sampling instants. Therefore, just being predictably fast  enough most of the 
time or just providing an answer w i t h i n  a time l i m i t  a r e  not s a t i s f ac to ry  
c r i t e r i a  for  real-time performance. Hence, the worst case execution time 
performance of an expert system has to  be determinable before embedding into a 
t ime-cr i t ical  application. Therefore, a real-time expert system shell should 
support user defiried search strategies so that the fault diagnosis strategy of 
the dornain expert can be incorporated i n t o  the expert system design. 

. 

- 13 - 



3 .  RULE SET PROCESSSSR KNWLECSE XPRESENTATION 

The primary goal  of the en t i r e  project is the  discovery and exploration 
of novel ways for implementing expert system s t y l e  programming techniques f o r  
use i n  r e a l  time appl ica t ions .  The cent ra l  approach towards t h e  fu l f i l lment  
of t h i s  goal is t he  specif icat ion of a new form of programming language a long  
w i t h  t h e  means t o  t r ans l a t e  and in te rpre t  t h i s  new language. The new' aspect 
of t h i s  language, the USDL (User System Design Language), i s  the incorporation 
of a d d i t i o n a l  r e p r e s e n t a t i o n a l  f a c i l i t i e s  for handling topological system 
information i n  t h e  same way a s  convent iona l  programming languages handle  
procedura l  information. Tha design of the USDL i t s e l f  and the  implementation 
of a program that t rans la tes  and in t e rp re t s  the USDL a r e  t h e  two j o i n t  t a s k s ,  
e x e c u t e d  i n  pa ra l l e l ,  t h a t  formed the main research e f f o r t .  

The syntac t ica l  specif icat ion of the USBf System Description Language i s  
p resen ted  a s  a document appendix.  Goals for USDL des ign  include:  1) t o  
manipulate var iables  and expressions i n  a comprehensive f a sh ion  s i m i l a r  t o  
tha t  employed by convectianal programming languages (e .g . ,  Ada and POXTRAN); 
2 )  t o  aef ine  and access subprosrams i n  a block s t ructured f a sh ion  s u p p o r t i v e  
of s t ructured programing methcdoiogy; 3 )  to  support the usage of if-then-else 
ru l e s  i n  a forward c.?aining manner; 4 )  t o  allow ru le  c l u s t e r i n g  acco rd ing  t o  
user  inci icated f u n c t i o n a l  c o n t e x t s ;  5 )  t o  spec i fy  topological i n f o r m t i o n  
regarding the interconnection of components i n  a general dynamic system; 6) to 
provide mechaisms t3 support multiple representation of components a t  various 
levels  of abs t rac t ion  - either as single  objects or as entire subsystems; 7 )  
to supply comple te  user  c o n t r o l  of f low of c o n t r o l  throughout  t he  e n t i r e  
system model - a combination of t r a n s v e r s i n g  any one system l e v e l  and a l s o  
moving down t o  expand embedded systems as required; 8 )  t o  specify topological 
t ypes  ( a g g r e g a t e s  of components and connec t ions )  and t o  bind p rocedura l  
i n fo rma t ion  tc  t h e s e  types ;  9 )  t o  allow rapid software prototyping by using 
powerful  and q u i c k l y  implemented compi la t ion  t echn iques ;  1 0 )  t o  suppor t  
i n t e r a c t i v e  t e s t i n g  of a user  system d e s c r i p t i o n ;  11) and t o  suppor t  a 
t r a n s l a t i o n  3 f  t h e  u s e r  sys t em model i n t o  a l a n g u a g e  s u i t a b l e  f o r  
implemer,tation i n  a r e a l  time environment for t i m e  c r i t i c a l  appl icat ions (a 
fea ture  not rezdi ly  avai lable  us ing  convent iona l  expe r t  system development 
t o o l s ) .  

These were t h e  g o a l s  f o r  t h e  p a r a l l e l  RSP p ro to type  e f f o r t :  1) t o  
provrde  a s impie b u t  f u n c t i o n a l  user in te r face  to explore usage of the  User 
System Descriprion Language; 2 )  t o  support  t h e  pa r s ing  of  t h e  USDL; 3 )  t o  
d e t e c t  and d i agnsse  user er rors  i n  USDL programs; 4 )  t o  design and implement 
an In te rna l  Systen! Desc r ip t ion  ( I S D )  d a t a  s t r u c t u r e  used t o  c o n s t r u c t  a n  
i n t e r n a l  ( t o  t h e  RSP) ve r s ion  of t h e  system model gmerated from the  USDL 
program;  5 )  t o  p r o v i d e  a p l a t f o r m  f o r  t h e  i n t e r a c t i v e l y  d i r e c t e d  
i n t e r p r e t a t i o n  of t h e  ISD r e s u l t i n g  from the  t rans la t ion  of t he  user system 
model; 6 )  tc  show tha  a b i l i t y  t 3  support  t e t r a n s l a t i o n  of t h e  ISD i n t o  a 
t a r g e t  language s u i t a b l e  f o r  use i n  embedded computer systems; 7 )  and to  
demonstrate th2 f e a s i b i l i t y  of ussng Ada t o  f u l f i i l  the  above mentioned goals. 

3.1 A Hybrid Apprxzh t o  Knowledge Representation 

The  User System Description Language ( U S D L )  processed by t h e  R u l e  S e t  
Processor  (RSP) is the m e n s  c r s d  to  represent knowledge a b o u t  a system. The 
USDL i s  a w e l l  d e f i n e  language, wi th .  standards for  both t h e  representat ion of 
meaning (lanyuage s a u n t i c s )  and s t ruc ture  (language syntax).  This sect ion of 

- 14 - 



t h i s  docuiitent describes the lzaguage semantics of the U S D L .  The U S D L  BNF 
<. sp-tan specification) appeitrs as an appexiix to  this document. 

Much of the specification of the USDL comes from commcnly used block 
structured programming languages. For example, the expression syntax and 
semantics used by the USCL are roughly a subset of Ada, while scoping ru les  
foi most names a r e  taken from Pascal. However, a most important feature of 
t h e  language, a merger of spezification of the topological relationships amng  
systems and system hierarchies w i t h  procedural resources, i s  entirely new and 
so represents  a novel approach t o  so lv ing  simulation and d i a g n o s i s  
reqcxanents of general dynamic systems. 

The USD Language descr ibed  here  i s  t he  r e s u l t  of a p re l imina ry  
invest igat ion in to  t h e  requirements of a general purpose system description 
lariguage, and as  suct. may probably undergo r e v i s i o n  under a Phase I 1  
development. I t  is u n l i k e l y  that any of the current features may be deleted - 
althoggh sane may be changed - and i t  i s  expected that new language fea tures  
w i l l  be added a s  necessary to improve performance and increase productivity. 
Tile USDL referred t o  i n  t h i s  document i s  o f f i c i a l l y  known a s  "USDL 1.1"; 
future versions w i l l  be assigned new version numbers as appropriate. 

The kind of knowledge canmnly used to  represent sequences of actions and 
algorithms i s  ref erred io  as procedural information. Procedural information 
:.5 usually r e a l i z e d  as mostly l i n e a r  arrangements of i n s t r u c t i o n s .  
Tradi t ional  computer languages are examples of knowledge representation tools 
using p i lmr la i ly  procedural information s t ra teg ies .  These languages work 
well for those problem that can be treated i n  an easily reducrble, one step 
ai a tine, sequential approach. 

The k i c d  of knowldge corvcsnly used to represent the relationships among 
m l t i p l e  e n t i t i e s  i n  a fixed b u t  a ib i t r a ry  arrangement i s  re fe r red  to  a s  
topcicgical informat ion. Topological information is usually realized as a 
Sraph srructiire composed of a set  of nodes w i t h  a rcs  forming the various 
interconnect ions of the nodes. Traditional representations of topological 
knowledge include both graphical approaches (box and arrow diagrams) and 
:onpii:er geneiaced neLwork data structures. Graphic hardcopy diagrams can be 
easily rtade, b u t  are not easily represented by traditional computer languages. 
Tt i s  jxssibls  to  dyr&ca:ly prcduce data structures to represent topological 
iniorcation, but the design and d e v e l o p a t  needed for t h i s  task is often time 
CGr.S\rTll.lg. 

The  problsfn of the corcquter mcdelirrg of a general system requires  both 
types of knowiedge for a cmplete representation. For each component (block) 
of rhe systea, procedural knowledge is required to model the act ions of t h a t  
compo~en t  €or  c e r t a i n  inpu t s  and outputs. Prom the viewpoint of the 
conponent, i t  is  unimportant to  know from where the i n p u t  values a r r i v e  or t o  
where the output values a r e  sent ;  i t  i s  only necessary t o  c rea t e  ( u s i n g  
proceddral knowledge) the ccrrect outpdt  results from the given current  and 
Fast i n p u t  da ta .  !?or tne en t i re  arrangement of the components that make up 
the general system, topological information i s  required t o  accurately move 
d a t a  throughout the system mcde:. From the viewpoint of the network that 
z o n n ~ t s  the ccmpmefits, i t  i s  unimportant t o  know how the various values 
irarisinrrted are generated or us&; i t  i s  only  necessary to  correctly transmit 
(using copological knowldge) these values among the components and t o  and 
from the world a t s i d e  of the &el. 

- 15 - 



The U S D L  i s  designed for the r e a l i z a t i o n  O f  both procedural  and 
topological  information about general systems. Figure 3.1 i l lustrates  the 
elements of a system model using the USDL. 

Top0 I og i cal Know 1 edge 

Blocks - fundonal elements of systems 
Blocktypes - describe blocks using inneritam 
Externals - connections across systems 
Paths - connections among blocks in a system 
Systems - define subsystems for blocks 

Attributes - vanables internal to a block 
Lines - define connection points to paths 
Subsystems - low level representation 

Procedural Knowledge 

Declare hems - variables (per system) 
Rulesets - groups of procedural information 

Declare Hems - variaBies (per ruleset) 
Rules - if-then-else knowledge representation 
Rulesets - nest& procedural information 

Oedare hems - variables (per rule) 
Tea expression - yields boolean result 
TheMlse statements - executable code 

Elements of a System using the 
User System Description Language 

m 
0 
0 
I 

OD 
m 

Figure 3 . 1  

- 16 - 



3.2 US3L Semantics: Systems 

A systeiii i s  r e p i - r s e x i e d  ay the USDL as a col lect ion of resources 
bracketed a a system description header and t a i l .  An example: 

_ _  I a a a a  * a  t t ac a t 

-- Start of example. 
-- Here i s  an example systen description. 
-- The system name i s  "eraqle-system_1". 
-- Note that comments are always preceded -- 

system exzmple-systerii-L i s  
beg i n  

by a double dash. 

-- Various system resouices appear here. 

end exaq?e-system-l; 

The reserved word "system" introduces a system descr ipt ion.  (Reserved 
itords have special  meaning for the REP and are imavailable for use as user 
ident i f iers . )  i t  is followed by the user def ined name to identify the system. 
The reserve3  wcrts "is'* a& "begin" follow the system identifier.  After the 
r ~ s c - ~ - &  word "begin", an arbitrary number of system resources (defined below) 
ffiay appear, all of which are thereafter associated w i t h  the enclosing system. 
P. system descr ipt ion i s  zoncluded w i t h  t he  reserved  word "end" and a 
senucolon. 

The system name m y  be optionally repeated immediately pr ior  t o  the 
sanicolon for the sake of clari ty.  Note that a l l  reserved words i n  the USDL 
must ap2ear using only lower case letters.  User identifiers may use a mixture 
c t  uppsr arid lcwar c a r e  L e t t e r s  along w i t h  d i g i t s  and the underscore 
character. A l l  ident i f iers  must begin w i t h  a l e t t e r .  I d e n t i f i e r s  may be 
a - b L t r 2 i A l ; r  long and a l l  characters are considered Signif iCdnt .  

Each systeu descripcion dsfines an enclosing name scope. This enclosing 
sccpe i s  used t o  control access to  the names defined as a result of resource 
d e f i n i t i o n s  w i t 2 i n  the system description. A l l  names, except for  a few 
ciasces of i d e n t i f i e r s  described l a t e r ,  dsf ined a t  a given scope level are  
svailable only  w i t h i n  thac scope and only after their defining descr ip t ions .  
O n l y  the rime of a s y s t a  along w i t h  certain identifiers (external labels and 
iuieset nanes) defined a t  that system level can be referenced outs ide of t h e  
system descr ipt ion.  This feacure, ais0 found i n  a l l  modern block structured 
languages, helps t o  l i m i t  uiitnecessary complexity by r e s t r i c t i n g  i d e n t i f i e r  
access to  only those regions that require such access. 

When a system description i s  givsn, i t  actually describes a system type - 
a t e r i l a t e  t.bt can bz used as a resource of a larger, enclosing system one or 
cure t ixss .  FOI exaple ,  a przicular  system may consist of ten subsystems, 
all cf which are identical except for their arrangement wi th in  the enclosing 
s y s t m .  The USDL faci l i ta tes  this usage by allowing the one time d e f i n i t i o n  

- 17 - 



of t h e  subsystem (as a type) and then referencing this system as required as a 
bu i ld ing  block i n  an enclosing system. 

A USDL main program source f i le ,  a User System Description ( U S D ) ,  i s  just 
a single system description. This single system type, because i t  appears a t  
the outermost possible level ,  i s  interpreted as  t h e  actual system being 
modeled. One and only one such system description may appear a t  the outermost 
level of a U S D L  source f i l e .  (Important note: the outermost system present 
acts as a root to the system model and so i s  commonly referred to as the "root 
system".) 

System descriptions i n  the USDL may include various resources that define 
both the topological and procedural information required to completely specify 
the system model. Each of these resources are defined below; Table 3 . 1  l i s t s  
a l l  the available resources and their functions: 

Resource 
Block 
Block type 
Declare 
External 
Path 
Rules et 
System 

Table 3.1: USD Resources and Functions 

Purpose 
A node i n  a system graph; has inputs/outputs 
Definitions used to help create blocks 
Defines and allocates a user defined scalar 
Connects inputs/outputs w i t h  enclosing system 
An arc i n  a system graph; connects nodes 
Contains rules and other procedural information 
A subsystem type; same fornrat as enclosing system 

The block, blocktype, external ,  and path resources a re  primarily 
concerned w i t h  the representation of topological  knowledge. Ruleset 
resources ,  which include rules w i t h  executable statements, a r e  closely 
connected w i t h  the representation of procedural knowledge. Systems combine 
a l l  resources (including subsystems) t o  merge topological and procedural 
knowledge. 

3 . 3  USDL Semntics: Block 

A block (a.k.a. ccarponent) m y  be considered as a node of the  graph that 
makes up the immediately enclosing system. For example, i f  a given system 
describes a simple logic circuit ,  each gate could be represented as  a separate 
block. For another example, a complex electro-mechanical control system may 
have blocks that represent en t i re  systems (computers, actuators ,  sensors, 
f i l t e r s ,  and mechanical l inkages)  - such blocks themselves could be 
represented by subsystems. 

Here are some examples of block descriptions: 

Start of example. 
There are three blocks here, "block - 52", "switch-l8", and "stick-1". 

system example-system-1 i s  
begin 

-- Various system resources appear here. 

- 18 - 



-- Here i s  a block t .k t  vses a general type. 

i 
~i 

-- 'Jerious block tescurces a p p a r  here. 

end block - 5 2 ;  

-- Heie i s  B block thzt us26 3 specific named type. 

b l o c k  switch-lE is type switch-blcck-type 
beg in 

-- Variom block resources appear here. 

end switch-18 ; 

-- 9 e r t  is another block that USBS a specific named type and has 
-- PO othar rssources: 

block stick - 1 i s  tme stick - block-type; 

end example-system-1; 

-- End of sample. _ _  a ~ t ~ t ~ a a a a s + a a a  

The reservsd word ':block" lntioduces a block description. I t  i s  followed 
by the cser deEFne3 r a e  t o  ider:t ify the block. The reserved word "is" follows 
t h s  block i e e n t i f i e r .  Blocks may inheri t  types from blocktype descriptions 
idescr ibcd below) $r may have general typss. I f  a given block has no 
inheritor3 resources, the reserved word "geieral" appears after t h e  word " is"  
i n  the block h s d e r .  If the block does inherit some resources, the blocktype 
tha t  c c r . t e i n c  thase r e f ~ ~ h t o - c  i s  represented by the reserved word "tiTS" 
fallme5 by t h s  aF:i=ra?lr;3te kioclitype iden t i f i e r .  IA e i ther  case of type 
raf erefize, :he .:jcei.?& vorrl "begin" immediately follows. A f t e r  the reserve3 
word "b?gfil", an  arbitrary r.uzbc,r of block resources (define? below) may 
a p p e ~ r ,  ~ % i l  of which a r e  thsreefter associated with the enclosing block. A 
blcck d s z c ; : i p t i m  i s  cmcluaed wi th  t h e  reserveb word "end" and a semicolon. 
The k i c r k  iime msy be optimeliy repeat,d immsdiately prior to the semicolon 
far ti;e s&e cf clar i ty .  

I n  the C B S S  where no additional block resoiirc~s are defined, then the 
"bsgin em2 <;>iock-id>" may be deleted. For example: 

biozk no-extra-resources is type complete-block-type; 

is a conplcte block descripticri. 

Blccks  an2 b lxk types  coctain ~n arb i t ra ry  number of block resources. 
%sra zre t.hr?e i .ixis of block resources: ctiribgtes, l ines ,  and subsystems. 
These resour:es E:,' 3 ~ i c r i S e i  belox. These attributes resources are given i n  
Table 3.2 .  

- 19 - 



Table 3.2: Elements of USD Resours  

Resource Elements Resources 

Block Attributes, lines and subsystems 

Blocktype Attributes, lines and subsystems 

Dec 1 ar e Identifier, basetype indicator 

External Ident i f ie r  

Path Block and line identifiers 

Ru lese t Declarations, rules, nested rulesets 

system Blocks, blocktypes , declarations,  
externals, paths, rulesets 

3.3.1 L'SDL Semantics: Block - Block Attributes 

An attribute resource acts as a statically allocated variable bound t o  a .  
given block. Attributes allow for the parameterization of block function by 
associating scalar values w i t h  particular blocks or blocktypes. For example, 
a block representing a simple switch wi th  a single input and a single output 
would have an attribute wi th  a boolean value indicating whether or not the 
input-output path was currently conducting. A much more complicated block 
that describes a multipole bandpass f i l t e r  may require many a t t r ibu tes  w i t h  
floating point values used to describe the f i l t e r  transfer function. 

Attributes have identifiers and basetypes. There a re  three basetypes 
used ic the U S D L .  These basetypes are: boolean, float, and i n t e g e r .  (These 
three words are reserved by the USDL.) A boolean basetype value may be either 
t rue  or f a l se ,  a f loa t  basetype value takes on floating point values, and an 
integer basetype indicates integral values. (The words "true" and "false" are 
also reserved. ) 

An attrihute m y  be given an in i t ia l  value as pa r t  of the i r  def ini t ion.  
The value of an a t t r i bu te  may be changed later unless i t  i s  declared to be 
cofistant . 

Here are some exanples of attribute descriptions: 

_ _  ****a********** 
-- Start of example. 

system a t  t r ibu t e-example-sys tem i s  
begin 

-- Various system resources appear here. 

block simple-switch-1 i s  general 
begin 

- 20 - 



4 

-- Here i s  a simple attr ibute that gives 
-- the switch conducting status. 
-- T i e  words "at CriCilLe' '  I "is", "basstpe" I 
-- and "boolean" are reserved. 

a t t r ibute  is-closed is basetype boolean; 

end simple-switch - 1; 

block simple-swi tch-2 is general 
beg in  

-- Here is  another switch -ample with an i n i t i a l  value (closed). 
-- The words "default" and "true" are reserved. 

a t t r ibute  i s  - closed is hsetype boolean default true; 

end simple-switch - 2 ;  

block simple-switch-3 i s  general 
begin 

-- tiere 1s another switch example with 
-- a constant i n i t i a l  value (open). 
-- The words "constant" and "false" are reserved. 

a t t r lku te  is-closed i s  constant basetype boolean default fa lse;  

e,?d simple-switch-3; 

bicck several-attrrbutes-block i s  
beg in 

-- Note that identifiers used within a block description m u s t  be 
-- uniq.Je w i t h i n  that description. 

a t t r ibute  flag-:. is hsetype boolean; 
atcribute fiag-Z is basetype boolean default true; 
a t t r rbute  flag 3 ic basetype boolea default false; 
a t t r ibu te  flag14 is constant basetype boolean default true; 
a t t r ibu te  fiag-5 i s  constant basetype boolean default false; 

attzibute x i i s  basetype float;  
a t t r ibu te  x12 is  basetype float default 2.71828; 
a t t r ibu te  x-3 i s  basetype f loat  default -3.14159; 
a t t r ibu te  x-4 i s  constant basetyFe float default 0.0; 
a t t r ibu te  x-5 is c o n s t a t  basetype float default 2.59e+06; 

a t t r ibu te  ival-1 i s  basetype i n t e g e r ;  
a t t r ibu te  ival-2 i s  Sasetyps in teger  default 0; 
a t t r ibu te  ival 3 is basetype i n t e g e r  default -312; 
zt t r rbute  ivalI4 is constant basetype integer default 32767; 
a:cribute ival - 5 is constant basetype integer default -1; 

end several-attributes-block; 

- 21  - 



end attribute-example-system; 

The reserved word "at t r ibute"  introduces an attribute resource. I t  1 5  
followed by the user defined name that identifies the attribute. The reserved 
word " i s "  follows the a t t r ibu te  ident i f ie r .  I f  the attribute value i s  to 
remain constant, the reserved word "constant" follows immediately. The 
attr ibute basetype i s  then defined by the reserved word "basetype" followed by 
one of the  three available basetype indicators. An in i t ia l  value can then be 
specified by the reserved word "default" and then a l i t e r a l  value of the 
appropriate basetype. A semicolon concludes an attribute resource. 

Note that the a t t r ibu te  identifier i s  always required but the constant 
and default value clauses are optional. The basetype clause i s  required if no 
basetype information for that attribute has been inherited from a previously 
appearing blocktype description. Attribute identifiers must be unique w i t h i n  
a block. 

Attributes can be referenced as parts of expressions (described below) i n  
the enclosing system description. An attribute reference i s  of the form: 

component-id .attribute-id 

where presence of t h e  component identifier i n  an attribute reference allows 
for disambiguation where two or =re components have attributes that happen to  
have the  same name. The symbol between the  component and a t t r i b u t e  
identifiers i s  a period and i s  referred to as a "selector" operator. 

3 . 3 . 2  USDL Semantics: Block - Block Lines 

I n  order that  blocks may receive and transmit data ( i n  t h i s  case ,  
d i scre te  scalar values),  a mechanism defining the inputs and outputs of a 
given block i s  necessary. The USDL uses the " l ine"  block (and blocktype) 
resoarce. Each l ine resource wi th in  a block describes a single data channel 
e i ther  i n  or out of the block. A complete l i n e  resource inc ludes  an 
identif  i z r ,  a mode indicator (flow data direction) clause, a basetype clause, 
ana an optional history (recent value record) clause. 

Each line of a block has an associated value. This value represents some 
scalar value a t  a particular m O m e n t  i n  time corresponding to some potent ia l ly  
measurable quantity a t  that line. The basetype of t h i s  value may be boolean 
(binary values, single pole switches, e t c . ) ,  f l oa t  (voltages, pressures,' 
currents,  forces, etc. ), and integer (multipole switches, discrete positioned 
mechanisms, etc.)  as rsquired by the application. Because the modeling of 
dynamic systems requires ncIt only a current value a t  a given point, but also 
recent values a t  the same point, the USDL allows for automatic recording of 
recent measurements i n  addition to the current measurement of any l ine value 
i n  the system. The count of recorded history (default one) values a t  a l i n e  
i s  specified using a history clause. History recording i s  particularly useful 
i n  modeling systems w i t h  components w i t h  behavior dependent not only on 
cgrrent inputs b u t  alsc past recent inpu t  and output values. 

- 22 - 



. 

Here are some examples of line resources: 

_ _  n t * n n n n n n + * t n , n  

-- Start of example. -- 

system line-system-example i s  
begin 

-- Various system resources appear here. 

block low-pass-filter-53 is general 
begin 

-- Here are attributes for the f i l t e r :  

a t t r ibute  cut-off i s  basetype float default 20.0; 
at t r ibute  gain is basetype float 0.95; 

-- Here is the input  line: 

l ine f ilter-input i s  mode input  basetype float;  

-- And here i s  the output line: 

line filter-output i s  mode output basetype float;  

end lowgass-filter-53; 

block push-button-8 i s  general 
begin 

-- This LS a model of a SPST momentary contact push button. 

-- Here i s  the mechanical input :  

line button is mode i n p u t  basetype boolean; 

-- Here are the electrical connections: 

l ine current-in is mode input basetype float;  
l ine current-out i s  mode output basetype float;  

end push-button-8; 

-- Here i s  a block that keeps the last four inputs and 
-- the las t  two outputs: 

block debouncer-0 i s  general 
begin 

line db-in i s  mode i n p u t  basetype integer history 4; 
line db-out i s  mode output basetype integer history 2; 

end debouncer-0; 

- 23 - 



end line-system-example; 

-- End of example. _ _  n * * n n * * * * n n n n n n  

The reserved word "line" starts a line resource. I t  i s  followed by the 
user defined name that ident i f ies  the l ine w i t h i n  the block. The reserved 
word "is" appears immediately after the line identifier. The next part of the 
l ine  def ini t ion i s  the information flow indicator for the channel; this  i s  
referred to as the flow mode of a line and this  mode clause consists of the  
reserved word "mode" followed by e i ther  the reserved word "input" or the 
reserved word "output". An  " input"  mode indicates that data i s  flowing i n t o  
the block; an "output" mode indicates that data i s  flowing out of the block. 
After the mode clause, the basetype clause appears. The basetype clause 
defines which of the available basetypes i s  used for the representation of the 
value of the line. As wi th  basetype clauses for attributes, a basetype for a 
line s ta r t s  w i t h  the reserved word "basetype" followed by one of the available 
basetype indicators. Following the basetype information, an optional history 
clause appears i f  records of multiple recent values are required. A l ine 
history clause i s  the reserved word "history" followed by a posit ive integer 
constant that defines the number of records of a line's value. If  no history 
clause i s  present, a default value of one i s  assumed. A l i n e  resource i s  
concluded by a semicolon. 

Note that the line identifier is always required and t h e  history clause 
is optional.  Each of the mode and basetype clauses a re  required i f  such 
information for that l ine has not been inherited from a previously appearing 
blocktype description. Line identifiers must be unique within a block. 

Line values (current and past) can be referenced as parts of expressions 
(described below) i n  the enclosing system description. A reference of the 
current value of a line can be of two forms: 

camponent-id.line-id 

and also: 

component-id.line-id.history[O] 

where the zero inside of the brackets of the second reference indicates  the 
current value ("time zero" or "current time plus zero"). The value inside the 
brackets can be an arbitrary i n t g r a l  expression but should, when evaluated, 
f a l l  i n  the  range of zero t o  ( m i n u s  N), where N equals history reservation 
minus one. Here i s  an example of a reference a t  time "current t i m e  minus 
three" : 

f ilter-18 .voltage-in. history[-3] 

Note that  the reserved word history always precedes the bracketed expression, 
and that the expression i s  never positive. History values a re  kept only for  
lines and not for attributes. 

The USDL implements the passage of time i n  the system description a s  a 
sequence of equal i n t e r v a l  d i s c r e t e  periods of duration. The system 
developer's selection of actual units of time i n  use (seconds, microseconds, 
e t c .  1 i s  not important to the model; the RSP only requires that each interval 

, 

- 24 - 



i s  equal i n  length to  the next, and that a l l  portions of the system model a r e  
synchonized. The advancement of model time is under user control and t h e  RSP 
autoomtically shif ts  values almg the history storage l i s t s .  

O f  course, most real world systems function using continuous time, which 
i s  somewhat d i f f i c u l t  to  simulate w i t h  d i sc re t e  d i g i t a l  computers. The 
quantized treatment of t i m e  by the U S D L  can be thought of a s  a periodic 
sampling of continuous time wi th  each time dependent value i n  the system model 
being updated simultaneously. 

3.3.3 USDL Semantics: Block  - Block Subsystems 

For a very low level  system model, t h e  individual blocks d i r e c t l y  
enclosed by the system d e s c r i p t i o n  w i l l  r ep resen t  t h e  lowest l e v e l ,  
undivis ible  components of the system. For systems descriptions a t  higher 
levels, blocks may represent entire subsystems. These subsystems i n  t u r n  may 
have blocks tha t  a l so  represent lower level subsystems, and so forth a l l  the 
way down to systems composed of only atomic components. 

The U S D L  a l lows  for the association of subsystems as a block (and 
blocktype) resource. Note that a given block (or blocktype) may have both a 
subsystem representation and a simple representation camposed of only lines . 
and at t r ibutes .  The motivation for  t h i s  i s  t o  provide greater  developer 
f l e x i b i l i t y  i n  modeling systems: some simulation strategies may require i n  
depth subsystem representation while many diagnostic approaches would employ 
top-down methods that f i r s t  use a simple view of a component and investigating 
a block's subsystem representation only when necessary. 

A block subsystem representation is the simplest of the block resources. 
A subsystem resource s ta r t s  wi th  the reserved word "subsystem" to  indicate the 
presence of a subsystem representation. The name (system ident i f ier)  that 
identifies the subsystem type appears a f t e r  the subsystem keyword, and the 
r e source  i s  concluded by a semicolon. Here a re  some examples of block 
subsystem resources: 

s u b s y s t e m  and-gate-system; 

subsystem high-pass-filter-system; 

Note tha t  the system i d e n t i f i e r  must correspond to  a system type already 
defined. This is an example of the rule that each identifier i n  the USDL must 
be defined before it i s  used .  

A m a x i m u m  of one subsystem resource i s  permitted per block or blocktype. 

Here are  some examples of subsystem resource usage: 

_ _  *************** 
-- S t a r t  of example. 
-- 

system subsys t em-u sage-examp le i s 
beg i n  

-- Various system resources appear here. 

- 25 - 



-- For a block to use a subsystem resource, the indicated resource 
-- must first be defined. The following are two system descriptions 
-- usable as subsystems: 
system s imp1 e-swi t ch-s ys t em is 
begin 

-- Various system resources appear here. These resources define 
-- the characteristics of the system type "simple-switch-system", 
-- a subsystem that can be referenced by blocks in the enclosing 
-- system "subsystem-usage-example". 

end simple-switch-system; 

s y s t em t r i ck y-op-amp-s y s t em i s 
beg in 

-- Various system resources appearing he 
-- model tricky operational amplifiers. 

end tricky-op-amp-system; 

e define a system to 

-- With the appropriate subsystems defined, block descriptions can 
-- now reference them as block subsystem resources. 
block switch-1 is general 
begin 

-- Various block resources appear here. 
-- Here is the subsystem resource: 

subsystem simple-switch-system; 

end switch-1; 

block op-amp-33 is general 
beg in 

-- Here is an instance of the use of "tricky-op-amp-system". 
subsystem tricky-op-amp-system; 

end op-amp-33; 

block op-amp-34 is general 
beg in 

-- Here is another use of the "tricky-op-amp" subsystem. Note that 
-- each such instantiation of a subsystem refers to a different 
-- copy of the subsystem; the subsystem system description actually 
-- defines a system type that can be used repeatedly among different 
-- blocks. 
subsystem t r  ic ky-op-amp-sy s t em ; 

- 26 - 



end op-amp-34; 

end subsystem-usage-example; 

-- End of example. _ _  W W W  I(. 8 W  W W  W W  W W  W 8  

3 . 4  USDL Semantics: Blocktype 

Some systems described by the USDL many contain many blocks that are made 
up of only a feu types. For example, an actively controlled beam composed of 
three hundred components could be modeled using only a feu types of blocks 
( la te ra l  and longitudinal struts,  piezoelectric Strain sensors, and integrated 
servo ac tua tors )  repeated throughout the overal l  system. To a id  i n  the 
developent of models for such kinds of systems, the USDL supports a language 
construct called a blocktype. A blocktype i s  another system resource (like a 
block) and appears i n  system desc r ip t ions  i n  t h e  same p l a c e s  a block 
descr ipt ion appears. A blocktype description i s  quite similar t o  a block 
description and i t s  only use i s  t o  help w i t h  the def inr t ion  of blocks (or 
other blocktypes). 

Blocktype descriptions have the same three kinds of resources as do 
blocks: attribures, lines, and subsystems. 

An a t t r ibute  or a line may be either partially or completely def ined i n  a 
blocktype. A subsystem resource, i f  present, must be cmpletely defined i n  a 
blocktype description. The basic idea for the function of blocktypes i s  t o  
copy the collection of b lock  resource informtion from a type parent ( i f  any) 
and combine i t  w i t h  explicit resource information i n  the blocktype description 
and then construct a new set  of block resource def in i t ions  ( a  type) to made 
available for usage by blocks and other blocktypes. 

Here are some examples of block and blocktype usage: 

_ _  t w w w w * w w * * w w * w w  

-- Start ot example. 

systeu blocktype-example is 
begin 

-- Various system resources appear here. 

-- Here i s  a simple blocktype declaration that defines the presence -- of a single attr ibute.  

blocktype single-scalar-blocktype i s  
begin 

end single-scalar-blocktype; 
at t r ibute  factor i s  basetype float;  

-- Here are two usages of the above blocktype: 

biock multiplier-32 i s  type single-scalar-blocktype 
beq i n  

- 27 - 



-- Because of the type inheritance, an implicit resource of 
-- "attribute factor i s  basetype float;" exists for this block. 

line voltage-in i s  mode i n p u t  basetype float; 
line voltage-out i s  mode output basetype float; 

end multiplier-32; 

block divider-91 is type single-scalar-blocktype 
begin 

-- Because of the type inheritance, an implicit resource of 
-- "attribute factor i s  basetype float;" exists for this b lock .  

line pressure-in i s  mode input  basetype float;  
l ine pressure-out i s  mode output basetype float; 

end divider-91; 

-- Here i s  a blocktype exanple sequence that includes attribute, 
-- l h e ,  and subsystem resources. 

blocktype one-from-two-type i s  general 
beg i n  
line q-in-1 i s  mode input ;  
l i n e  q-in-2 is mode i npu t ;  
line q-out i s  mode output; 

end one-from-two-type; 

bl  ockt  ype boo1 ean-ga te-t ype i s  type one- f r an-t wo-t ype 
begin 

line %in-1 i s  basetype boolean; 
line q-in-2 i s  basetype boolean; 
line Lout is basetype -lean; 

end boolean-gate-type; 

blocktype adder-type i s  type one-from-two-type 
begin 
line q-in-1 i s  basetype float; 
line %in-2 is basetype float; 
line q-out i s  basetype float;  

end adder-type; 

blocktype and-nand-gate-type i s  type boolean-gate-type 
begin 
attr ibute inversion-flag i s  boolean; 
subsystem and-nand-system; 

end and-nand-ga te-type; 

bloc ktype and-ga te-t ype i s  type and-nand-gat e- type 
beg i n  

end and-gate-type; 
attribute inversion-flag i s  constant false; 

bloc kt ype nand-gat e- type i s type and-nand-ga te-t ype 
begin 

- 28 - 



at t r ibute  inversion-flag i s  constant true; 
end nand-gate-type; 

block and-gate-1 i s  type and-gate-type; 
block and-gate-2 i s  type and-gate-type; 
block and-gate-3 i s  type and-gate-type; 

block nand-gate-1 i s  type nand gate type; 
block nand-gate-2 i s  type nandIgateItype; 
block nand-gate-3 i s  type nand-gate-type; 

end blocktype-example; 

-- End of example. _ _  ********a****** 

T h e  important point t o  remember about blocktype usage i s :  when t h e  
ult imate inher i tor  of blocktype information ( a  block) i s  described, each 
a t t r i b u t e  and l i n e  resource must be minimally defined. An a t t r i b u t e  i s  
minimally defined by i t s  basetype (constant and defaul t  information i s  
supplimental). A line i s  minimally defined by i t s  mode and i t s  basetype. 

3.5 USDL Semantics: Declare 

A "declare" description acts as a resource to USDL system descriptions to 
ind ica te  a user declared scalar associated with that system type. USDL rule 
and ruleset descriptions (described below) also use declare descr ipt ions a s  
fesources in a similar fashion. 

A declare description indicates the binding of a user defined i d e n t i f i e r  
w i t h  storage f o r  a scalar  of one of the available basetypes. Here are  sane 
examples of declare descriptions: 

declare active-mode: boolean; 

declare standby-valtage: f l o a t ;  

A declare description i s  started by the reserved word "declare". This i s  
fol lowed by a user  supplied i d e n t i f i e r ,  a colon, the  desired basetype 
indicator, and finally a semicolon. Identifiers used i n  declare  i d e n t i f i e r s  
should be unique a t  the scope level of their declaration. 

Items defined as a result of declare descriptions can be referenced a s  
parts of expressions or as variables (both  are described below). 

Kere i s  an example of d e c l a r e  d e s c r i p t i o n s  appear ing  i n  system 
descriptions : 

_ _  * *t * *e ** ** 

-- Start of example. 

system declare-example-system i s  
beg i n  

- 29 - 



declare temporary-sum-1: float; 
declare temporary-sum-2: float; 

-- Various system resources appear here that may use the variables 
-- " temporary-sum-1" and " temporary-sum-2". 

system another-system i s  
begin 

declare delta-x: integer; 
declare delta-y: integer; 

-- Various system resources appear here that may use "delta-x" 
-- and "delta-y" along w i t h  "temporary-sum-1" and "temporary-sum-2". 

end another-system; 

end declare-example-system; 

-- E n d  of example. _ _  * * * * * * * * * * . . w * w  

Items defined as a result of declare descriptions obey scoping access 
r u l e s .  This means that an ident i f ie r  declared a t  one system level a r e  
accessible to interior system descriptions, unless another object w i t h  the  
same name i s  declared a t  a n  i n t e r i o r  l e v e l .  An ident i f ier  declared a t  one 
system level i s  not accessible a t  enclosing (exterior) levels. 

3.6 USDL Semantics: External 

Most systems have an in t e r f ace  t o  an ex te r io r  environment; t h i s  
environment i s  either the "outside world" or an imnediately enclosing system. 
To faci l i ta te  the transmission of values into and out of systems, the USDL has 
a system resource for associating connection points (a particular line of a 
particular canponent) wi th  labels (identifiers) external to  t h e  system. Here 
are some examples of external descriptions: 

external voltage-in i s  terminal-s tr i p  . connector-4 ; 

external torque-xy-out i s  actuator-2.shaft-output; 

There are two different interpretations of external descriptions. If an 
external description appears a t  the outermost system level ,  the external 
iden t i f i e r  corresponds to a connection to the world outside the system model. 
I f  an external description appears a t  any level interior to the outermost 
system level, the external identifier corresponds t o  a l i ne  ( w i t h  t h e  same 
i d e n t i f i e r )  w i t h i n  a block tha t  uses the subsystem w i t h  t h e  external 
description. 

An example USD illuscrates both cases: 

_ _  *****.********* 
-- Start of exasple. 

system ext ernal-sample-ou t errno st-s ys t em i s  

- 30 - 



begin 

-- Here is a system type that describes a simple switch: 

system simple-switch-system is 
begin 

block sss-bl is general 
begin 
line sss-bl-in is mode input basetype float; 
line sss-bl-out is mode output basetype float; 

end sss-bl; 

block sss-b2 is general 
begin 
line sss b2-in is mode input basetype float; 
line sss~b2-out is mode output basetype float; 

end sss-b2; 

block sss-b3 is general 
begin 
line sss-b3_in is mode input basetype float; 
line sss-b3-out is mode output basetype float; 

end sss-b3; 

external sw-in is sss-bl.sss-bl-in; 
external sw-out is sss-b3.sss-b3-out; 

end simple-switch-system; 

-- Here ate two blocks that use the above subsystem: 

block switch-in is general 
beg in 
line sw in is d e  input basetype float; 
line swIout is mode output basetype float; 
subsystem simple-switch-system; 

end swi tch-in ; 

block switch-out is general 
beg in 
line sw in is mode input basetype float; 
line sw-out is d e  output basetype float; 
subsys t& simple-switch-system; 

end switch-in; 

-- Here are two external descriptions that are system resources to the 
-- outermost system: 
external current-in is switch-l.sw-in; 
external current-out is switch-2.sw-out; 

end external-sample-out ermost-sys tem; 

-- End of example. _ _  ***.*******.*** 

- 31 - 



3 . 7  USDL Semantics: Path 

A path descr ipt ion i s  a system r e s o u r c e  used t o  p rov ide  a connec t ion  
between a n  o u t p u t  l i n e  of one block and t h e  i npu t  l i n e  of another block. 
(Actually, a path may also connect an output l i n e  of a given block to  an input 
l i n e  of t h e  same b l o c k . )  The r e s t r i c t i o n s  on path de f in i t i ons  are t h a t :  an 
output must  always be connected t o  an input, t h e  base types  of t h e  i n p u t  and 
o u t p u t  c o n n e c t i o n s  m u s t  be i d e n t i c a l ,  and p a t h s  may o n l y  e x i s t  between 
components a t  t h e  same system leve l .  

P a t h s  r e p r e s e n t  p h y s i c a l  connec t ions  such as  wires, s t r u t s ,  beams, 
h y d r a u l i c  l i n e s ,  e t c .  The  USDL p r o v i d e s  f o r  mechanisms t o  p r o p a g a t e  
in fo rma t ion  a long  these p a t h s  using the "pulse" statement (detailed below). 
The information moved along a path cons i s t s  of a s i n g l e  scalar  value o f  t h e  
basetype of t h e  input and output l i nes .  

Here are some examples of path descriptions:  

path alpha i s  from block-23.line-4 to block-38.line-3; 

path p-23 i s  from piston-2.flow-out to  valve-2.flow-in; 

path from beam-support.corner-2 to brace-3.west; 

A path descr ipt ion begins wi th  t he  reserved word "path".  An i d e n t i f i e r  
may be supplied for a p a t h ,  but i s  not required; if present, it is imdia te ly  
followed by the  reserved word "is".  The source connec t ion  i s  in t roduced  by 
t h e  reserved word "from" and i s  specified by giving t h e  corresponding block 
and l i n e  i d e n t i f i e r s  separated by a period. The des t ina t ion  connection p o i n t  
then  a p p e a r s  with the  reserved word "to" and then the corresponding block and 
l i n e  i d e n t i f i e r s  also separated by a period. Note that the  l i n e  referenced as 
p a r t  of t h e  source connec t ion  p o i n t  m u s t  be declared w i t h  a flow mode of 
output and the  l i n e  associated w i t h  t h e  des t ina t ion  connect ion p o i n t  must be 
d e c l a r e d  w i t h  a n  i n p u t  f l o w  mode. The  blocks r e fe renced  i n  t h e  p a t h  
descr ip t ion  musi  be declared p r io r  t o  t h e  appearance of the path descr ipt ion.  

H e r e  is an example of a system with paths: 

system examplepath-system i s  
beg i n  

blocktype simple-block-type is general 
begin 

l i n e  input-terminal i n  mode input basetype f l o a t ;  
l i n e  output-terminal i n  mode output basetype f l o a t ;  

end simple-block-type; 

block blk-1 i s  type simple-block-type; 
block blk-2 i s  type simple-black-type; 
block blk-3 A S  type simple-block-type; 

-- Paths are u s e d  t o  mke a circular linkage: 

- 32 - 



path alpha i s  from blk-l.output_terrnirl to b l k  2.input-terminal; 
path beta i s  from blk-2 .output-terminal t o  blk-3. input-terminal; 
path floyd i s  from b l k  - 3.output-terminal to b l k  - l.input-terminal; 

end examplegath-system; 

-- End of example. _ _  a a* a. a * * .  a * * * * *  

T h e  USDL allows for an a rb i t ra ry  number of paths i n  a system, and a 
connection point may have an arbitrary number of paths connected a s  long a s  
the above directional mode and basetype matching rules are obeyed. I t  is not 
necessary for a l l  connection points to have paths, b u t  such a condition may be 
commented upon by  t h e  RSP t o  i n d i c a t e  a poss ib ly  incomplete system 
specification. 

3.8 USDL Semantics: Rulesets 

A ruleset is a language construct, analogous to a subroutine, tha t  a c t s  
as the carrier of procedural information i n  the USDL. Specifically, a ruleset 
is composed of three kinds of ruleset  resources: declarat ions ("declare"  
items, same as  system level declare items), rules (containing declarations, 
t es t s  and executable statements), and nested ru lese ts  (analogous t o  nested 
systems). 

A system may have zero or more associated ru lese ts  declared as  sysiem 
r e s o u r c e s .  Those ru lese ts  declared a t  t h e  system level (and no t  those 
declared i n  other r u l e s e t s )  a re  the only ru lese ts  accessible  as a higher 
system level ,  either by use of an "elaborate" statement (describe3 below), or 
by interactively specified elaboration. 

A reminder: system descr ipt ions may contain nested systems (used as 
tenplates for block subsystems); ru lese t  descriptions may contain nested 
ru l e se t s  (these can be called from rules as described below); and systems may 
also have zero or m r e  rulesets (these are the only rulesets accessible  from 
the immediately enclosing system to the  system of declaration). 

Here is an example including ruleset descriptions: 

_ _  * 8 a * * a n * s n * . t t w  

-- Start  of example. 

system ruleset-example-system is 
begin 

system interior-system i s  
begin 

-- The following ruleset i s  embedded i n  the 
-- system "interior-system" : 

ruleset interior-ruleset-19 i s  
begin 

-- Various ruleset resources appear here. 

- 33 - 



end i n t e r  ior-ruleset-19; 

-- The following ruleset i s  also embedded i n  the 
-- system "interior-system": 

rules e t  interior -r u 1 es.e t -4 2 i s  
begin 

-- Various ruleset resources appear here. 

-- The following ruleset i s  embedded i n  the 
-- ruleset "interior-ruleset-42" : 

ruleset used-only-by-ruleset_42 i s  
begin 

-- Various ruleset resources appear here. 

end used-only-by-ruleset-42; 

end interior-ruleset-42; 

end i n t  er ior- sys t em ; 

-- Here i s  a rulesat embedded i n  t h e  outermost system: 

ruleset main-ruleset-1 i s  
begin 

-- Various ruleset resources appear here. 

erd main-ruleset-1; 

end ruleset-example-system; 

The reserved word "rrileset" introduces a ruleset  description. I t  i s  
followed by the user defined name used to identify the ruleset. The reserved 
words "is" and "begin" follow the ruleset iden t i f i e r .  A f t e r  the word "begin", 
an a rb i t ra ry  number of ruleset resources (declare items, rules, and interior 
rulesets) may appear. A f t e r  the last  ( i f  any) ruleset resource, the ruleset  
description is concluded by the reserved word "end" followed by a semicolon. 
The ruleset name may be optionally repeated immediately pr ior  t o  the closing 
semicolon. 

A ruleset description defines a name scope i n  a manner similar t o  a 
system description. Names defined i n  a ruleset description (except for the 
ruleset ndm i t s e l f )  are accessible only wi th in  the ruleset description. 

Rulesets embedded i n  the highest level system are accessible from the 
outside environment. The RSP interpreter treats three ruleset ident i f ie rs  a t  
t h i s  level i n  a special manner; these three are directly executable by using 
interactive interpreter comnands: 

- 34 - 



Knterpr eter Ruleset Intended 
COmmand Identifier Purpose 

preset preset Init ialize external values. 
simulate simulate Step simulated time and simulate. 
diagnose diagnose Diagnose and report system performance. 

More such specially cased interpreter commands may be added during fur ther  
development. 

I -  
3.8.1 USDL Semantics: Rulesets - Declarations 

I -  

& 

Ruleset descriptions may contain an arbitrary number of declare items i n  
a fashion s imilar  t o  system descr ipt ions.  A declare item i n  a r u l e s e t  
d e s c r i p t i o n  has t h e  same syntax a s  a system descr ipt ion declare  item 
(described above), and the ident i f ier  used for  the declare  item storage i s  
accessible  only w i t h i n  the enclosing ruleset and only af ter  the appearance 
(definition) of the declare item i t s e l f .  

Here i s  an errample of declare items i n  a ruleset description: 

__ n n nn nc1 n n* nn 

-- Start of example. 

system example-for-declare-rtems_in_ruleset_syst i s  
begin 

ruleset a-ruleset-with-some-declare-items i s  
begin 

declare x: float; 
declare i: integer; 
declare a-flag-variable-with-a-long-name: boolean; 

end a-ruleset-with_some-declare_items; 

end example-for-declare-items_in_ruleset_syst; 

-- E n d  of example. _ _  nn n* nn n- sc1 n a  n* 

For the  sake of c l a r i t y ,  a l l  declare items i n  a ru lese t  description 
should be grouped’together a t  the s tar t  of sequence of ruleset resources tha t  
make up the body of the ruleset description. 

The storage associated w i t h  declare items i n  a ru lese t  i s  s t a t i c a l l y  
a l loca ted .  T h i s  means that, although rulesets can be recursively referenced 
(by use of the ca l l  statement - described below), each invocation of a ruleset 
uses the same storage for the declare items t i . e ,  only a s ing le  u n i t  of 
storage for  a declare  item i s  a l loca ted) .  This s t a t i c  based s t y l e  of  
a l loca t ion  was chosen because of i t s  potentially greater speed and simplicity 
for time c r i t i ca l  embedried applications. A fu ture  revision of t h e  USDL may 
of fe r  a way t o  specify automatic (per  invocation) storage i n  place of the 
default s ta t ic  allocation. 

- 35 - 



3.8.2 USOL Semantics: Rulesets - Rdes 

Rule dcscriptions appear as ruleset resources. Taken collectively, rules 
contain a l l  of the procedural information a b o u t  t h e  system model. Rules also 
provide for t h e  static and dynamic ordering of the execution of procedural 
information. 

An arbitrary number of rules may appear i n  any ruleset .  When present,  
ru le  descriptions appear se r ia l ly  (never recursively), i n  a ruleset. Rules 
usually appear after any declare item descriptions and a f t e r  any embedded 
(interior) ruleset definitions. Unlike the other, topological portions of the 
USDL, the order i n  which rules appear i n  a ruleset i s  very important, as  the 
rules embody procedural information and so the rules i n  a given ruleset are 
(nominally) executed i n  sequential order. Rule execution s t a r t s  w i t h  the 
f i r s t  ru le  i n  a ruleset  and continues w i t h  subsequence rules i n  the ruleset 
unless redirected by certain executable statements. The purpose behind the 
described rule/ruleset organization i s  to group rules i n  semantically related 
groups and to allow user greater user control of rule search and execution by 
use of such context sharing. The compon alternative to such rule placement is  
to have a l l  the rules i n  a single, linear database and so require extensive 
search and evaluation overhead. While the latter approac! is concsptually 
srmpler, i t  is regrettably urucceptsble for those applications that  cannot 
to le ra te  conventional rule  based exper t  systems because of their excessive 
time requirements. 

R u l e s  have t w o  main parts:  the declaration part and the conditional part. 
The declaration part appears f i r s t  and consists of zero or more declare items 
w i t h  the same characteristics as ruleset declare items. The conditional part 
consists of an expression test followed by a affirmative statement (the "then" 
p a r t )  optionally followed by an alternative statement (the "else" part. When 
the rule i s  e x e c u t e d ,  the expression test i s  evaluated and, i f  evaluated to be 
t rue ( o r  nonzero), the affirmative statement i s  executed. I f  t h e  expression 
test  evaluates to false (or zero), the alternative statement i s  executed ( i f  
present). 

A u s e f u l  convention i n  t h e  current U S D L  i s  t o  simply use the boolean 
constant "true" i n  the ru l e ' s  expression test  to unconditional execute the 
affirwatrve statement. I t  i s  possible that a future version of the USDL may 
allow a condensed version of the above and just allow a compound statement 
instead. 

3.8.2.1 USDL Semantics: Rulesets - Rules - Declarations 

A rule  may have zero or more declare i tems. A r u l e  d e c l a r e  item 
associates a u n i t  of storage w i t h  a user specified identifier. The declare 
i t e m  i s  available for reference frcm the point of i t s  definition to  the end of 
the rule description i n  which i t  is defined. 

iiere are some rule declare items: 

declare q-f lag: bcolean; 
declare counter: integer; 
declare scale-factor: f loat;  

Note that t h e  declare syntax for rule declare items i s  identical t o  tha t  
of r u l e s e t s  and that of systems. The reason for  allowing declare item 

- 36 - 



descriptions to  appear inside of these three forms i s  to allow f o r  the user 
controlled association of names (variable identifiers) wi th  areas of ref ermce 
(systems, rulesets, and rules).  Because the USDL enforces name scopes for t h e  
above forms ( i . e ,  names may not be referenced outside of their scopes), i t  i s  
easier for the system developer to enforce good proqramning style by reducing 
opportunities for inadvertent object references. 

3.8.2.2 USDL Semantics: Rulesets - Rules - Expressions 

Expressions are groups of identifiers and symbols, assembled according to 
specific syntactical rules, that provide for the manipulation of ar i thmetic  
quant i t ies  using common mathematical operations. USDL expressions appear i n  
rules, both as rule test  expressions and as general expressions i n  many of the 
available statement kinds. Expression forms i n  the  USDL have been designed to 
be very similar to those i n  conventional programming languages (e.g. ,  Ada and 
FORTRAN) to minimize system developer learning requirements. 

3.8.2.2.1 USDL Semantics: Rulesets - Rules - Expressions - Literals 

The USDL allows for  the representation of different types of constant 
values. Such values are usually referred t o  as l i t e r a l s .  There a r e  three 
type of l i t e r a l s  avai lable:  boolea constants, f l o a t  constants, and integer  . 
constants. Here are  same examples of these scalra l i terals :  

boolean: false true 
float:  0.0 1.0 389.334 1.0e+6 42.5e-11 
integer: 0 1 412 12442 

Note that constant negative l i t e r a l  values a r e  disallowed. However, a 
l i t e r a l  integer or l i t e r a l  f l o a t ,  when preceeded by a minus sign, can be 
correctly processed as an expression With a unary minus (negation operator). 

Str ing l i t e r a l s  a r e  also allowed by the USDL. Although s t r i n g  l i t e r a l s  
are  not permitted as parts of expressions, they are used i n  other contexts i n  
ce r t a in  statement k i n d s .  A s t r ing  l i t e r a l  i s  a sequence of zero or more 
noxquote chracters delimited by quotes. Here a r e  some examples of s t r i n g  
l i t e r a l s  : 

"X" 
"hello there folks" 

*'a long string l i t e r a l  value i s  okay to use; no length limit" 
" W  

3.8.2.2.2 USDL Semantics: Rulesets - Rules - Expressions - Variables 

A variable  i n  the USDL is an object that i s  associated with a value such 
that the value can be changed. Each variable i s  of exactly one of th ree  
scalar  basetypes : boolean. f l o a t ,  and integer .  Variables came i n  several 
classes: 

- 37 - 



Class Declared i n :  

systems, rulesets, rules 
blocks, blocktypes 
blocks, blocktypes 

declare item 
block attribute 
block line 

A declare i t e m  is referenced by use of the declare i t e m  identifier. 

A block attribute i s  referenced by use of an a t t r ibu te  indication - a 
three part  construct made up o f :  the block ident i fer  corresponding to the 
block that includes the attribute, a period, and the a t t r ibu te  ident i f ie r .  
Examples : 

bl0ck-52.thie~h0ld-limit 
battery-2.electrolyte-level 

A block l i ne  can be referenced by use of a block l i ne  current value 
indication - the block identifier corresponding to the block that includes the 
line, a period, and the line identifier. This manner of line value indication 
always re fers  to t h e  present value of a l ine ("current time minus zero"). 
Examples : 

block~52.output~ciisplacen1ent 
?At tery-2 .out pu t-vol tage 

A block line can also be referenced by use of a block line history value 
indication. This mcde of line value indication i s  similar to the block l i n e  
c u r r e n t  v a l u e  mode, except that a history buffer selection suffix i s  appended. 
A history suffix consists of a period, the reserved word "history",  and a 
nonpositive integer expression enclosed i n  brackets. The value of the i n t e g e r  
expression i s  the number of time periods i n  the past that  corresponds to a 
stored history value. P. bracketed expression that evaluates to  zero indicates 
the current line value. A bracketed expression w i t h  a value of minus one 
i n d i c a t e s  the  immediately (chronologica l )  preceding l i n e  value, and 
successively negative indices indicate ear l ie r  and ea r l i e r  l i ne  values. 
Examples: 

block~52.output~displacement.history[0] -- redundant s u f f i x  
block-52. output d i  splac emen t . h i  story [ -2 ] -- two ticks ago 
bat tzry-2 .outpu?-voltage. history[ i + ( j / 2 )  1 -- expression index 

3.8.2.2.3 USDL Semantics: Rulesets - Rules - Expressions - Operators 

The 3SDL supports a wide variety of expression operators that manipluate 
bolaan, f ioat ,  and integer objects ( l i t e ra l s  and variables). A U S D L  operator 
i s  either monadic (one operand, prefix format) or dyadic (two operands, i n f ix  
format) and always returns a single value as a result of evaluation. 

- 38 - 



Table 3.3: USD Language Operators 

Monadic Operators : 

+ arithmetic affirmation 
- arithmetic negation 
not boolean negation 

Dyadic Operators : 

+ arithmetic sum 
- arithmetic difference 
* arithmetic product 
/ arithmetic quotient 
I9 arithmetic exponentiation 
> relational: greater than 
>= relational: greater than or equal 
< relational: less than 
<= relational: less than or equal 
= relational: equal 
/= relational: not equal 
and boolean product 
or boolean inclusive disjunction 
xor boolean exclusive disjunction 
cand boolean product, conditional second operand evaluation 
cor boolean inclusive disjuction, conditional 2nd op evaluation 

The order of evaluation follows the usual conventions, and for those 
operators that are also present in A d a ,  the precedence rankrng is the same as 
in A d a .  Parentheses may be used to group expressions for both readability and 
to overide default precedence. 

The exact rules for expression formation are described in the B N P  
specification appendix of this document. 

3.8.2.3 USDL Semantics: Rulesets - Rules - Statements 
Statements in the USDL represent various kinds of actions that can be 

performed during system modeling. Each statement kind has its own syntax and 
semantics. Table 3.4 presents a list of available ruleset statements in the 
USD language. Each statement kind (except assignment statements) starts with 
a reserved word for that kind. A statement is terminated by a semicolon. 
Multiple statements may be groupd together for (nominally) sequential 
execution by using a block statement. 

- 39 - 



Table 3 . 4 :  USD Language Ruleset Statements 

Statement Punct ion 

Accept 
Advance 
Assignment 
C a l l  
Compourrd 
Display 
Elaborate 
Exit 
I f  -then-else 
N u l l  
Pulse 
R e a d  
Reset 
Return 
Write 

Bring external data  in to  system model 
Advance his tory buffers by one s t ep  
Waluate expression and assign t o  a var iab le  
Transfer control t o  a descendent ru lese t  
Associate an a rb i t r a ry  number of statements 
Export data  outside the model 
Transfer control t o  subsystem ru lese t  
Terminate user system descr ipt ion 
Control conditional execution 
Perform no act ion 
Copy output l i n e  value t o  connected input l i n e s  
Read a value from an external f i l e  
Reset a l l  scalar values i n  system model 
Terminate ruleset  execution and return t o  caller 
Write a value to  a n  external f i l e  

3.8.2.3.1 USDL Semantics: Rulesets - Rules - Accept Statement 

An "accept" statement is usad for br icg ing  d a t a  va lues  i n t o  t h e  system 
nodel from a scurce outside of the rncdel. During t h e  i n t e rac t ive  execution of 
t h e  RSP,  t h i s  e x t e r n a l  source  is t h e  s t a n d a r d  i n p u t  ( c o n s o l e )  of t h e  
environment;  when ranning in an embedded system, t h e  accep t  statement i s  
ignored. 

An accept statement takes one of the two following forms: 

accept <variable> ; 
accept cprompt - s t r ing> war i ab l  e> ; 

The act ion of an accept  s ta tement  (when r u n n i n g  i n t e r a c t i v e l y )  i s  t o  
pcluse E D  in te rpre ta t ion  urd reqriest a value of the user. In the f i r s t  form, 
a prompt character ">" i s  printed on the  conso le  and t h e  RSP waits f o r  t h e  
user t o  type  i n  a s ca l a r  value of a basetype appropriate for  t he  cvariable.  
After a va l id  scalar  l i t e r a l  i s  e n t e r e d ,  t h e  RSP a s s i g n s  t h e  v a l u e  t o  t h e  
c v a r i a t l e .  I n  the second form, t h e  <prompt-string> i s  pr inted on the  console 
on i t s  awn line before the user i s  prompted for a value for t h e  c v a r i a b l e .  

Here are some examples of the accept statement: 

accept "Enter a value for voltage: " voltage-2; 
accept "Retry ccunt: " k - V a l ;  

accept Connect-status ; 

3.8.2.3.2 USDL Sanantics: Rulesets - Rules - hdvance Statement 

The "advar,ce" statement provides control Over t h e  advancement of v a l u e s  
a iong  t h e  his tory buffers assccia:ed w i t h  the l ines  of blocks. There i s  only 
one form of the advance statement: 

- 40 - 



advance ; 

. 

When executed, the advance statement causes a l l  his tory buffers i n  the  
e n t i r e  system being modeled to  be advanced by one s tep.  This act ion i s  
intended for the writing of "smulate" rulesets  t o  model time advancement. 
The advancement of a history buffer associated w i t h  a l i n e  causes each value 
to  be moved towards the "past" by one time u n i t ;  a value a t  position P w i l l  be 
moved t o  posit ion ( P  - 1) .  Values that are a t  t h e  least recent position i n  
the buffer are lost .  The value a t  the most recent position of the buffer i s  
cleared (becomes zero or false as appropriate). 

3.8.2.3.3 USDL Semantics: Rulesets - Rules - Assignment Statement 

An assignment statement i s  used to calculate a value from an expression 
and to assign the result to a variable. There i s  a single form: 

<variable> := <expression> ; 

When e x e c u t e d ,  the assignment statement evaluates the <expression> on the 
r igh t  s ide of the assignment symbol ":=" and stores the result i n  the storage 
indicated by by the <variable> on the l e f t  s ide of the assignment symbol. 
Note t ha t  allowable variables include declare i t e m  identif iers ,  line values, 
and block attr ibute values. Here are some e q l e s  of assignment statements: 

xo := 0.0; 
delta-y := yl - yC; 
block - 19.voltage-out := block-19.voltage-in * block-19.scaling; 

3.8.2.3.4 USDL Semantics: Rulesets - Rules - Call Statement 

The "ca l l "  statement is used to  transfer control to a descendent ruleset 
i n  the same system. When the descendent ru lese t  terminates, control  i s  
returned t o  the point following the c a l l .  Execution of t h e  c a l l  statement 
does not change the current system level being modeled (compare w i t h  the  
"elaborate" statement). There i s  a single form of t h e  ca l l  Statement: 

ca l l  <ruleset-id> ; 

Here are some examples: 

ca l l  load-inputs; 
ca l l  calculat e-resu It s ; 
ca l l  store-outputs; 

3.8.2.3.5 USDL Semantics: Rulesets - Rules - Compound Statement 

The compound (or block) statement is used to  associate  an a r b i t r a r y  
number of statements for (nominally) sequential execution. A compound 
statement has the form: 

beg i n  

end ; 
<statement> . . . 

- 41 - 



Here are some examples: 
begin 

accept " E n t e r  scale: " scale; 
s := ( y l  - y o )  / ( x l  - x0)  * scale; 
cal l  put-slope; 

end; 
begin 

cal l  r s l ;  
beg i n  

cal l  rsx-a; 
cal l  rsx-b; 

end; 
end; 

3.8.2.3.6 USDL Semantics: Rulesets - Rules - Display Statement 

The "display" statement i s  used for br inging data values from the system 
model to a destination outside of t h e  model. During the interactive execution 
of the RSP, t h i s  external source i s  the standard output (console) of the 
environment; when running i n  an embedded system, the display statement i s  
ignored. 

A display statement takes one of the three following forms: 

display <label-string> ; 
display <expression> ; 
display <label-string> <expression> ; 

The action of the display statement, when running interactively, i s  to 
p r i n t  the <label-string> (when present), followed by the result of evaluating 
the <expression> (when present) .  Here are  some examples of the display 
statement: 

display "Now entering phase 3 ."; 
display block-ll.line-3.history[-5]; 
display "Subsystem W fault indication: " flag-a or flag-b; 

3.8.2.3.7 USDL Semantics: Rulesets - Rules - Elaborate Statement 

The "elaborate" statement provides the only means by which the subsystem 
representation of blocks, when present, can be expanded for modeling. There 
i s  a single form of the elaborate statement: 

elaborate <block-id> using <ruleset-id> ; 

The action of an elaborate statement i s  t o  transfer control t o  the 
ruleset designated by <ruleset-id> i n  the system associated by the subsystem 
resource i n  the block designated by <block-id>. Of course, to  work properly, 
the <block-id> block must have a subsystem representation and tha t  subsystem 
must include a directly enclosed ruleset wi th  the name of <ruleset-id>. When 
the indicated ruleset  concludes execution, control i s  re turned t o  the  
statement following the elaborate siatement. In this manner, the elaborate 
statement LS similar to a call statement. However, the elaborate statement 

- 42 - 



a l s o  changes (for the duration of i t s  indicated ruleset execution) the system 
associated with t he  "current system scope". 

Here are some examples of the elaborate statement: 

elaborate block-49 using diagnose; 
elaborate part-4-b using simulate; 
elaborate converter-24 using dump-variables; 

The action of elaborate statement execution also provides for moving data 
between the enclosing system (the one containing the elaborate statement) and 
t h e  enclosed system (the one used as the subsystem representation by the block 
being elaborated). When an elaborate statement executes, a l l  of the sca la r  
values associated w i t h  the  current values of the input lines of the elaborated 
block are  copied into the associated external items i n  the enclosed system, 
and then t h e  i n d i c a t e d  ruleset  i s  ca l led .  When t h e  indicated ru l e se t  
concludes execution, a l l  of the scalar values associated w i t h  the current  
va lues  of t h e  output l ines  of the elaborated block a r e  copied from the 
associated external items i n  the enclosed system. 

This  one-to-one corresondance of l i nes  i n  t h e  elaborated block and 
external items i n  the subsystem i s  t h e  basic formal/actual parameter mechanism 
for data transrmssion betreen system levels. 

3.8.2.3.8 USDL Semantics: Rulesets - Rules - Exi t  Statement 

T h e  " e x i t "  s ta tement  te rmina tes  t h e  modeling of the  user system 
descr ipt ion arbd control e x i t s  t o  the enclosing environment.  When r u n  
interactively, such termination i s  indicated to the user via the console. The 
modeling i s  a l so  terminated when the f i r s t  ruleset  elaborated terminates 
exception. There i s  only one form of the e x i t  statement: 

exit ; 

A n  e x i t  statement may appear i n  any ruleset  and s t i l l  have the same 
action regradless of placement. The intended use of the exit statement i s  t o  
provide a means of model termination when exceptional conditions occur. 

3.8.2.3.9 USDL Semantics: Rulesets - Rules - If Statement 

The " i f "  statement i n  the USDL i s  like a rule within a rule and is used  
for controlling conditional execution. An i f  statement has two forms: 

i f  <express ion> 

end i f ;  
i f  <expr essiom 

then <aff irmtive-statement> 

then  <affirmative-statement> 
else alternative-statement> 

end i f ;  

When an i f  statement is executed, the <expression> i s  evaluated f i r s t .  
I f  the r e s u l t  of the evaluation i s  nonzero (or true), then the <affirmative- 
s t a t emen t>  i s  executed.  I f  t he  r e s u l t  i s  zero  ( o r  f a l s e )  and t h e  

- 43 - 



<alternative-statement> i s  present (second form), then the <alternative- 
statement> i s  executed. Compound statements can be used to group multiple 
statements i n  e i t h e r  the <affirmative-statement> or the <alternative- 
statement>. 

Here are some examples of the i f  statement: 

i f  flag 

end i f ;  
if (delta-s / delta-t) = 0 

then call rs-4; 

then display "Speed zero" ; 
else 

beg i n  
speed := (delta-s / delta-t) fudge-factor - adjustment; 
display "Speed: " speed; 

end; 
end i f ;  

3.8.2.3.10 USDL Semantics: Rulesets - Rules - N u l l  Statement 

The " n u l l "  statement performs no action. I t  i s  intended to be used a s  a 
placeholder f o r  system models under development to indicate as yet unwritten 
executable code. I t  has a single form: 

n u l l  ; 

3.8.2.3.11 USDL Semantics: Rulesets - Rules - Pulse Statement 

The pulse statement i s  used to help automate the simulation of a system 
model by copying a l l  the current values of the output l ines  of a designated 
block  to the appropriate input lines of connected blocks. The pulse statement 
has a single form: 

pulse <block-id> ; 

When the pulse statement i s  executed, the value of each output l i n e  of 
the indicated block i s  copied in to  the corresponding inputs of connected 
blocks. Note that because more than one path may be connected t o  an output 
line, mre  than one copy of the output value i s  made. Here are some examples: 

pulse  inputgads; 
pulse block-18; 

3.8.2.3.12 USDL Senmntics: Rulesets - Rules - Read Statement 

The "read" statement i s  u s e d  to read a value from an external f i l e  to the  
system model. A l l  read statements read from the same f i le  (named "dfr") ,  and 
each read statement reads a single value i n  text format reading a single text 
line i n  the input  f i l e .  There are two forms of the read statement: 

read ; 
read Wariable ; 

- 44  - 



The f i r s t  form ac tua l ly  t ransfers  no value b u t  i s  used t o  read i n  a 
single text line (which i s  ignored). The intent here is to provide a means of 
skipping over commentary lines i n  the input f i l e .  The second form also reads 
i n  a single text line and causes the value of the scalar l i t e r a l  on that  l i n e  
to be assigned to  t h e  indicated <variable.  

Here are some examples: 

read; 
read delta-t; 
r ead block- 4 196 . i nver si on-a t t r i bu t e ; 

3.8.2.3.13 USDL Semantics: Rulesets - Rules - Reset Statement 

The "reset" statement provides a way to reset a l l  of the scalar values i n  
the system model. There i s  a single form: 

reset ; 

When a rese t  statement i s  executed, a l l  model values a r e  r e s e t :  a l l  
declare items, block l ine values, and block line history buffer values are a l l  
cleared. A l l  block attr ibute variable values are  cleared, unless a defaul t  
clause is present; i f  so, the attr ibute variable value i s  reset to t h e  default 
value. A boolean var iable  i s  cleared by se t t ing  i t  to  t h e  value f a l s e ;  
integer and f l o a t  variables are cleared by setting them to zero. 

3.8.2.3.14 USDL Semantics: Rulesets - Rules - Return Statement 

The "return" statement causes a ruleset to  terminate execution and return 
to i t s  caller.  If the ruleset was invoked using a ca l l  statement, execution 
i s  returned to  the point following the call  statement i n  the c a l l i n g  ruleset, 
and the current level of system modeling i s  unchanged - the system leve l  
remains the same. I f  the ruleset  was invoked using an elaborate statement, 
exeCutLon i s  returned to the point following the elaborate statement i n  the  
elaborating ru lese t  i n  the enclosing system, and the current level of system 
access is moved one step closer to  t h e  top level; a return t o  an elaboration 
w h i l e  already a t  the top level (implied by a ruleset elaborated as a direct 
comnand to  the RSP), terminates the system model. 

There i s  a single form for a return statement: 

return ; 

Rulese t s  a l s o  have i m p l i c i t  returns present. Each ru l e se t ,  upon 
execution of i t s  l a s t  avai lable  statement, w i l l  return t o  i t s  i nvoke r .  
Expl ic i t  re turn statements a r e  provided so that a ruleset my return early, 
and so not  execute a l l  of i t s  rules, i n  order t o  same processing resources 
when appropriate . 

3.8.2.3.15 USDL Semantics: Rulesets - Rules - Write StateaImt 

The "write" statement i s  used t o  write a value from the system model to 
an external f i l e .  A l l  write statements write to the same f i l e  (named "dfw"), 

- 4 5  - 



and each write statement writes a single value i n  text format on a Single text 
line i n  the output f i l e .  There are two forms of the write statement: 

write ; 
write <expression> ; 

The f i r s t  form actually transfers no value but i s  used to write out a 
single empty text l i n e .  The intent here i s  to provide a means of inserting 
blank l ines  i n  the output f i l e  to enhance readability. The second form also 
writes out a single text  l i n e  and causes t h e  value of the  ind ica ted  
<expression> to be written out on the single output text line. 

Here are Some examples: 

write; 
write mass * velocity; 
write block~4196.inversion_attribute; 

- 46 - 



4 .  RULE SET PROCESSOR USAGE 

One goal of t h e  RSP I (Rule Set Processor Prototype) effort has been the 
r e l a t i v e  ease of use of the program. The motivation here i s  t o  enhance 
productivity by making the software too l  solution simpler than the system 
model problem so that  the developer may w i l l i n g l y  spend more time on the 
problem than on the solution. Since an over-elaborate tool solution may 
require extensive training for a tool such as the RSP to be useful, i t  should 
be simple enough to  learn to use. 

The RSP prototype has been implemented i n  the s t y l e  of a conventional 
programming language interpreter/compiler.  Operation of the RSP i t s e l f  i s  
therefore quite simple (and i s  similar to  operation of commonly ava i lab le  
language processors). The result of this decision i s  to emphasize the role  of 
t h e  USDL (User System Description Language) i tself  along wi th  the developer 's  
a b i l i t y  t o  express a system model i n  terms of the USDL. Because the USDL was 
carefully designed to represent conventionally specified systems (blocks + 
interconnections + subsystem abstraction), a developer has a relatively simple 
task of transferring the topological aspects of a system model into the U S D L .  
A I  though the procedural information portion of a system model actually does 
require some programming using rulesets (structures analogous to procedures), 
t h i s  programing i s  not too much d i f f e r e n t  from that of frequently used block 
structured programming languages (e.g., C, Pascal, Ada). 

I n  addition to ease of use, another important reason for implementing the 
RSP i n  t h e  style of a conventional language processor i s  that the U S D L  formal 
language spec i f ica t ion ,  required for system descr ipt ion,  a l s o  enforces a 
useful formalism upon the expression of system models. As system models 
require a formal descr ipt ion that is realized external to the RSP software, 
t h e  future modeling effort i s  not necessarily tied to the fate of a particular 
RSP implementation. For example, i t  would be possible t o  develop other 
software modeling tools to work i n  conjunction with t he  RSP ( e .g . ,  graphical 
in te r faces ,  a l t e rna t ive  debugging too ls )  without having to re-specify the 
system model i t s e l f .  Because the USDL supports (and encourages) usage of 
component l i b r a r i e s  (resuable system models), there is a potentially high 
return i n  investing time i n  using a formal language descr ipt ion of dynamic 
s y s t e m s .  

4 . 1  System Model Development Cycle 

The f i r s t  s tep i n  the system model development cycle i s  to study the 
system to be described. I t  i s  not important a t  t h i s  stage of t h e  cycle t o  
f u l l y  specify the entire system, even i f  such knowledge is  available as would 
be the case i n  an already e x i s t i n g  system. What i s  important i s  t o  organize a 
complex system descr ipt ion i n  terms of a nested hierarchy where much of the 
lower level detai ls  are (temporarily) hidden by a high level description. An 
appropriate h i g h  level description may, for instance, consist of less than a 
dozen modules along w i t h  their interconnections. Those blocks a t  one level i n  
the hierarchical arrangement can later be represented as entire subsystems a t  
the immediately lower level; these subsystem descriptions may be supplied a t  a 
la ter  time. The goal  here i s  to use the USDL's power of nested representation 
to hide low level detai ls  so as to avoid having such d e t a i l s  overwhelm the  
entire modeling effort .  

- 4 1  - 



The next step i n  modeling a system i s  to examine any available component 
l ib rar ies  for resuable subsystem descriptions.  The USDL allows any USDL 
system model to be used as a component i n  a larger and more complex model. 
For example, an aerospace engineer may have a library composed of limiters, 
multipliers, f i l t e r s ,  notch f i l t e r s ,  actuators and sensors; a mechanical 
engineer may use a component library stocked wi th  various models of controls, 
motors, linkages, and power supplies; a structures engineer may have a custom 
l ibrary  b u i l t  up from previous work f i l l e d  w i t h  system models of struts,  
beams, and strain gauges. A proper set of component l ib rar ies  may go f a r  i n  
relieving the system developer of repetitive and error prone wbrk. 

The t h i r d  step of the system modeling task i s  to write (using the USDL) a 
f i r s t  attempt a t  a USD (User System Description). This f i r s t  t r y  should use 
only the highest layer of the modeled system along w i t h  any usable l ibrary 
subsystems. After t h e  USD i s  written, i t  can be run through the RSP prototype 
to detect and report various errors even though not enough information may be 
present for simulation or diagnostic activities. 

Once this h igh  level topographical description i s  proved syntactically 
correct ,  t h e  fourth step of incorporating procedural information i n  the USD. 
A s  stated elsewhere i n  t h i s  document, there a re  three designated rulesets  
(procedures) available for direct interpretation at  the highest system level: 
"srmulate" (intended for simulation), "preset" (intended for  reading i n  a 
system s t a t e  from a data f i l e ) ,  and "diagnose" (intended for  diagnostic 
act ivi t ies) .  A t  this stage i n  the model cycle, it would be p r u d e n t  t o  first 
w r i t e  the procedural i n f o r m a t i o n  required for system state presetting and 
simulation and insure i t s  proper functioning before implementing diagnostic 
knowledge. 

The f i f t h  step i s  to try interpreting the system model simulation u s i n g  
the RSP, and continuing refinements i n  the model based upon observations of 
i t s  behavior. As more confidence i n  the correctness of the model i s  gained, 
the f ide l i t y  of the model can be improved wi th  the expansion/substitution of 
various components throughout t he  model w i t h  lower l eve l  subsystem 
representations. Ultimately, every component i n  the model 's topological 
knowledge i s  e i ther  atomic (undivisible) or represented by a subsystem; 
additionally, the entire system has simulation code present and tested. 

Once a system model i s  established w i t h  a complete topography and 
complete simulation procedural knowledge, the sixth stage of model development 
i s  to provide the system model wi th  diagnostic procedural knowledge. For each 
system and component i n  the model, diagnostic ruleset  code i n  written to 
perform tests upon functions for that part of the model. In order t o  test  the 
diagnostic code, the developer can (purposely) introduce faults i n  the system 
simulation. Such introduction can be performed by various techniques: reading 
i n  a faul ty  system s t a t e  via a preset operation, writing deliberate (and 
temporary!) faults i n  the system topography or simulation information, or by 
providing for the interact ive prompting f o r  c r i t i c a l  information d u r i n g  
simulation. (An obvious extension to  the RSP i s  t o  have i t ,  upon command, 
in t roduce  e r r o r s  automatically throughout the simulation. This error  
injection would be either randm or uniform dependent upon user command, and 
the resu l t s  of the diagnostic information performance would be tabulated 
automatically.) 

- 48 - 



Now armed w i t h  a well-tested system model, the developer should now 
revrew the model for any potentially reusable components, and to  take such 
components and add them to the system library for future application. 

The final step i n  the USD development cycle (not  yet supported by the RSP 
p r o t o t y p e ) ,  i s  t o  use t h e  RSP t o  t rans la te  the USD in to  a conventional 
programing language i n  a nranner suitable for parting the model to an embedded 
computer environment. Under th i s  stage of t h e  development, the standalone 
interpreted/compiled version of the RSP would be tested, f i r s t ,  using a r e a l -  
t i m e  simulation generated sensor data, and fourth, using the embedded program 
i n  a f l i g h t  t es t .  

4 . 2  System Model Interpretation 

The RSP prototype user interface includes three commands used to  activate 
system model in te rpre ta t ion .  Each of these cOmnands, "simulate", "preset", 
and "diagnose", in i t ia te  interpretation of the ruleset of the same name i n  the 
outermost level  of t h e  system model. Other than s t a r t i n g  the  indicated 
ruleset interpretation, t h e  RSP treats each of the above user c o m n d s  i n  the  
same fashion and so i t  not "aware" as t o  the par t icu lar  function of t h e  
ru l e se t .  The three r u l e s e t  names chosen were picked t o  e s t a b l i s h  a 
programing convention and have no other significance. 

During the interpretation of these rulesets, interaction w i t h  the user i s  
allowed, b u t  i s  not necessary. The USDL has statements that perform input and 
output of da ta ;  to and from both t h e  console and external f i l e s .  These 
statements can be incorporated into any ruleset throughout the system model 
according to the desire of t h e  developer. 

The intented purpose of the "srmulate" ruleset i s  to perform a one step 
simulation of the entire system. The interpretation of the "simulate" ruleset 
should: take t h e  values of system's inputs, simulate each component, propagate 
results i n  the direction from internal input  connections t o  in t e rna l  output 
connections, and f ina l ly  assign values to  the system model external outputs. 
In multrlevel system madels, each subsystem should have i t s  own "simulate" 
r u l e s e t .  When the system model is t ranslated and ported t o  an embedded 
e n v i r o n m e n t ,  t h e  " s ~ m u l a t e "  r u l e se t  code i s  no longer needed s i n c e  t h e  
physiczl enviror.ment now supplies actual values. 

The intended purpose of t h e  "preset" ruleset i s  provide an a l t e r n a t i v e  
means of ini t ia l iz ing the scalar values of a system model. The idea i s  to use 
the "preset" ruleset t o  read values from an external f i l e  instead of producing 
them v ia  simulation. Use of the "preset" method can then help test  out the 
diagnostic ruleset  code by providing consistent values for development 
purposes. I n  multi level system models, each subsystem that requires such 
init ialization should have i t s  own "preset" ru lese t .  The! "preset" ru l e se t ,  
like the "simulate" ruleset, would be removed upon porting of the system model 
to an embedded environment. 

The i n t e n d e d  purpose of t h e  "diagnose" r u l e s e t  i s  t o  p rov ide  
" i n t e l l i g e n t "  diagnosis. For a multilevel system model, a "diagnose" ru l e se t  
i s  required for each subsystem w i t h i n  the model for which diagnosis i s  to  be 
performed. Unlike the "simulate" and "preset" ru lese ts ,  the "diagnose" 
ru lese t  should be preserved upon porting to the application environment so as 
to provide real time diagnostic abi l i ty .  

- 49 - 



4 . 3  USD Simulation Strategy 

The basic technique employed for designing simulation rulesets  i s  the 
input-to-output, bottom-up approach. Each system i n  the system model should 
have a "simuiate" ruleset, and t h i s  ruleset  should only be concerned w i t h  
a c t i v i t i e s  f o r  t ha t  system and no other system. Fortunately, once a 
simulation ruleset i s  written for a given system (and then incorporated in to  
that system), that system can then be used repeatedly as a subsystem i n  more 
complex systems. 

Here is the basic algorithm for system simulation (using a psuedocode 
l ist ing) : 

procedure simulate 

/ *  This routine i s  called f i r s t  for the root system and later for 
each subsystem i n  a depth f i r s t  m a ~ e r .  This depth-first 
search insures that the simulation of the components i s  
performed i n  the correct order so that a l l  information 
generated at the lower levels i s  made available to the higher 
levels of the simulation. */ 

begin 

/* Handle system inputs */ 

for each external  carrying a value into the  system do 
begin 

propagate input  value 
from external connection 
to i n p u t  line of of the appropriate camponent; 

end; 

/ *  Handle components (blocks) */ 

while unsimulated blocks remain do 
begin 

for each unsimulated block do 
begin 

/* process only blocks w i t h  complete inputs */ 

i f  the block has valid data for a l l  of inputs  then 
beg i n  

/ *  check for recursion *II 

if the block has a subsystem representation then 

/ *  recurse and process lower level */ 

elaborate the block using the simulate ruleset; 

- 50 - 



else 

/ *  no further recursion * /  

hand-simulate the block; 

end i f ;  / *  subsystem exists test * /  

/ *  propagate outputs * /  

for each output line of the block 
propagate the line value to the n e x t  block; 

/ *  done wi th  this block *i 

mark the block as simulated; 

end; /*  block simulation */ 
end i f ;  /* a l l  inputs valid */ 

end; / *  for loop * /  
end; / *  while loop */ 

/ *  Handle system outputs * /  

for each external carrying a value out of the system do 
begin 

propagate output  value 
from output l ine of of the appropriate component 
to  external connection; 

end; 

end; / *  simu1a:e */ 

4 . 4  USE Diagnosis Strateqy 

A s  to supplying of such intelligence, the major respons ib i l i ty  res ides  
w i t h  the  developer. The USDL and i t s  RSP interpreter provide a considerable 
level of support for i t s  system model implementation (topological/procedure 
knowledge fusion, b u i l  t - i n  block structured programing language, forward 
chaining ru l e s ,  e t c . ) ,  b u t  i t  i s  up t o  t h e  user t o  employ t h e s e  t o o l s  
properly . 

RSP I leaves the writing of the specific diagnostic ru l e se t  code t o  the 
developer. That i s ,  RSP I provides the environment so that  the application 
domain expert can select the appropriate procedural rules from the wealth of 
algorithms developed for  BIT and f a u l t  diagnosis i n  dynamic systems (Pau 
1981), (Motgalevskii 1978), (Willsky 19801, and (Basserville 1981). However, 
as  i s  the case w i t h  simulation ruleset  code, diagnostic code for a given 
system only has to be written once and can then be duplicated and reused fo r  
o t h e r  system models. Also, b o t h  diagnostic and simulation procedural 
information for subsystems can be written by specialists and then l a t e r  used 

- 51 - 



by generalists without requiring the generalists to be fully familiar with the 
lower level details. 

Diagnosis of a system begins with the "diagnose" ccmmand at the user 
interactive interface. Diagnostic interpretation should be performed only 
when the system model has a full set of valid values as will be the case after 
a complete simulation or preset. The complete interpretation of the 
"diagnose" ruleset is assumed to take place between successive time sample 
instants using a "frozen" set of values that do not vary during the diagnosis 
period. 

A useful concept in writing diagnostic code is idea of the "consistency 
relation" check. A consistency relation is some set of arithmetic operations 
performed on the inputs and outputs of a block that results in a determination 
of fault for that block (e.g., a wrap-around BIT, a parity check or a 
statistical hypothesis test). If a consistency relation fails for a block, it 
can be assumed that there is a failure of that block (or its subsystem 
representation, if any). If a consistency relation succeeds for a block, it 
can be assumed that the subsystem representation for that block (if any) is 
functioning correctly. In the case where it is not feasible to construct such 
a consistency check at a high level it may be necessary to instead write 
multiple consistency checks at a lower level and then combine the results of 
these checks for a higher level decision. 

The goal of achieving high speed diagnostic capability can be met by 
designing consistency relation checks for the higher level components; when 
these checks are passed, it allieviates time consuming examination of checks 
at lower levels. 

It m y  not be possible to write concise fault/no-fault consistency check 
ruleset code for each component type in a system model. For nmny real world 
components, usual consistency check methods produce only probabilistic 
results, and it is the responsibility of the developer to combine these 
results. The USDL supports a full set of operations upon probability values 
(using floating point variables) thus allowing the user to perform customized 
conditional analysis. 

For certain time critical applications, circumstances may occur so that 
it may not be possible to run all of the desired diagnostic code in the 
limited time available. For these applications, a family of consistency 
checks may be written such that the quicker running (more general) checks are 
used first and slower running (more specific) checks are used should time 
remain available. This graded strategy helps ensure that at least some 
diagnostic results are generated even if the interval allowed for diagnosis is 
insufficient for the circumstances for a particular cycle. The reasoning here 
is that it is better to derive a general, partially useful result instead of 
no result at all. 

The exact details of a diagnostic ruleset will vary among differing 
systems. However, for system models with multiple levels, a top-down 
selective approach would be appropriate for fixed time interval diagnosis. 
This approach, unlike the bottom-up full evaluation approach used for 
simulation, will spend time working on only those subsystems where problems 
are suspected. 

- 52 - 



Here i s  a suggested algorithm for system diagnosis (using a psuedocode 
l is t ing)  : 

procedure diagnose 

/ *  This procedure i s  called f i r s t  a t  the root level of the system 
model, and may be call& recursively a t  lower system levels as 
required. The goal is to expend effort a t  the level of 
invocation f i r s t  and to only elaborate subsystems for 
diagnosis when consistency relation checks a t  the level of 
invocation f a i l  and further analysis i s  indicated. */ 

/ *  The diagnosis here i s  a very sunple one wi th  an interest 
i n  only a certain fail/no-fail status. Most real world 
applications would use the standard rules for combination of 
certainty factors to  produce a more useful result. */ 

begin 

/ *  If called a t  the root system level, clear the failure s i t e  
global variable. This variable holds the name of the f i r s t  
component (if any) that f a i l s  a consistency check. */ 

i f  (called a t  r m t  level) then 

end i f ;  
failure-site := nowhere; 

/ *  Should diagnosis time exceed t h e  allocated interval, we can 
assume an interrupt w i l l  occur. The value of this 
variable w i l l  indicate whether or not enough time was 
available for a complete diagnosis. */ 

i f  (called a t  r m t  level) then 
diagnosis - completed := false; 

end i f ;  

/ *  Perform diagnosis at t h i s  level. Elaborate subsystems Only 
when necessary. */ 

while (failure-site = nowhere) and (undiagnosed blocks remain) do 
begin 

/ *  Select t h e  block among t h e  undiagnosed blocks with the 
highest diagnostic figure-of-merit. Th i s  f igure i s  given 
by the quotient of the probability of failure divided by 
the expected amount of time required for consistency 
relation checking for that block. 
minimize the overall diagnosis time; it w i l l  not affect 
the accuracy of the diagnosis i f  enough time is available 
for f u l l  diagnostics. */ 

This approach w i l l  

current-block := highest - merit(undiagnosed blocks); 

1/* Mark colnponent as diagnosed */ 

set-diagnosed(current-block 1 ; 

- 53 - 



- -  

/ *  Perform the consistency check on the current block. */ 

fault-detected := consistency-check-block(current-block); 

/ *  Process according to detection status. * /  

i f  (fault-detected) then 

/ *  Inconsistency - check for subsystem representation. */ 

i f  (subsystem-exists(current_block) 1 then 

/ *  Recursively activate a lower level diagnostic ruleset. 
This recursive scan should eventually detect a fault 
a t  a lower level; the location w i l l  be reported back 
i n  the global variable "failure-site". * /  

. elaborate subsystem of the current-block wi th  diagnose; 

/ *  Check to see i f  detection was false alarm. */ 

i f  (failure-site = nowhere) then 
report( "Warning: consistency check fault") ; 
report("At location: ", current-block); 

end i f ;  

else 

/ *  Fault detected of a simple block. */ 

failure-site := current-block; 

end i f ;  / *  subsystem exists test */ 
end i f ;  / *  consistency check failure test * /  

end; / *  block scan */ 

/ *  Diagnosis completed, adjust global completion indicator. */ 

i f  (called at  root level) then 
diagnosis-coaipleted := true; 

end i f ;  

end; /*  diagnose */ 

4.5  RSP Example System 

system binary-adder- sy s t em 

This system i s  U S ~  to 

. is  ( s e e  Figures 4 . 1  and 4 . 2 )  

model a f u l l  binary adder. A binary adder i s  a 
computational element that takes two  input bi ts  along with-a carry-in 
b i t  and produces a single b i t  sum and a single bit  excess (carry-out). 

This binary adder system directly encloses four modules to perfores i t s  
function. The value module indicates input values (using l ights),  t h e  

- 54 - 



-- sum generation module produces the single b i t  sum, the excess generation 
-- module produces the single b i t  excess (carry out) ,  and t h e  result system 
-- indicates (also using l ights) the results of the addition. 

-- Here i s  the truth table that describes this system: 
-- 
-- 

adder-a 

f a1 se 
true 
false 
true 
f a1 se 
true 
f a1 se 
true 

------- adder-b adder-c ------ > ------- ------- 
false false 
false false 
true false 
true false 
false true 
false true 
true true 
true true 

adder-s 

false 
true 
true 
f a1 se 
true 
f a1 se 
f a1 se 
true 

---- -- - adder-% 

f a1 se 
f a1 se 
false 
true 
f a1 se 
true 
true 
true 

-- -- -- - 

begin 

-- The following global varaible, "failure", i s  used to  indicate a 
-- detected failure a t  any level. This variable i s  in i t ia l ly  cleared 
-- by t h e  root level diagnose ruleset and i s  set only i f  a problem i s  
-- detected. 

declare failure: boolean; 

system and-system i s  (see Figure 4 . 3 )  -- 
-- This system i s  u s e d  to represent an AND gate. An AND gate takes two 
-- binary inputs and produces a single binary output that represents the 
-- logical product of the inputs. 

-- This system i s  independent of a l l  other systems. 

-- Here i s  t h e  truth table for this system: 

-- a-in1 a-in2 ------ > a-out 

-- 
-- 

-- 
-- -----. -e--- ----- 
-- fa lse  false 
-- true false 

fa lse  true 
true true 

-- 
-- 
-- 
beg i n  

fa lse  
fa lse  
false 
true 

block anchor i s  general 
begin 

line opl i s  mode input basetype boolean; 
l ine op2 i s  mode input basetype boolean; 
line result i s  mode output basetype boolean; 

end anchor; 

external a-in1 i s  anchor.op1; 
external a-in2 i s  anchor.0~2; 
external a-out i s  anchor.result; 

- 55 - 



ruleset simulate is 
begin 
rule 5-1 is 
begin 

i f  true then  

end i f ;  
end s-1; 

end simulate; 

anchor.result := anchor.op1 and anchor.0~2; 

ruleset diagnose i s  
beg i n  
rule d-1 i s  
begin 

i f  (anchor.result /= anchor.op1 and anchor.0~2) then 
begin 
display "failure detected: and-system" ; 
failure := true; 
return; 

end; 
end if ;  

end d-1; 
end diagnose; 

end and-system; 

blocktype and-module-type i s  general 
begin 
l ine a-in1 is mode input  basetype boolean; 
l ine a-in2 is mode input basetype boolean; 
line a-out i s  mode output basetype boolean; 
subsystem and-system; 

end and-module-type; 

system fork-system i s  (see Figure 4 . 4 )  -- 
-- This system i s  used to represent a forking connection. Each of the -- two boolean outputs i s  set to the value of t h e  single boolean input. -- 
-- This system i s  independent of a l l  other systems. 

-- Here i s  the t r u t h  table for t h i s  system: 
-- 
-- 

begin 

block anchor i s  general 
begin 
line operand is mode input  basetype boolean; 
line result1 is mode output basetype boolean; 
line result2 is mode output basetype boolean; 

end anchor; 

- 56 - 



external f- in  i s  anchor .operand; 
external f l  i s  anchor.result1; 
external f 2  is anchor.result2; 

ruleset simulate i s  
beg i n  
rule s-1 is 
begin 

i f  true then  
begin 
anchor .result1 := anchor .operand; 
anchor .result2 := anchor .operand; 

end; 
end i f ;  

end s-1; 
end simulate; 

ruleset diagnose is 
begin 

rule d-1 is 
beg i n  

i f  (anchor .result1 /= anchor .operand) then 
beg i n  
display "failure detected: fork-system (resul t l )" ;  
failure := true; 
return; 

end; 
end if; 

end d 1; - 
rule d-2 i s  
beg i n  
if (anchor .result2 /= anchor .operand) then 
beg i n  
display "failure detected: fork system (result2)"; 
f a i l u r e  := t r u e ;  
re t u r n  ; 

- 

end; 
end if; 

end d-2; 

end diagnose; 

end fork-system; 

blocktype fork-module-type i s  general 
begin 
l ine f i n  i s  mode input  basetype boolean; 
line r i  i s  mode output basetype boolean; 
line f2 i s  mode output basetype boolean; 
subsystem fork-system; 

end fork-module - type; 

system indicator-system is (Figure 4 . 5 )  -- 

- 57 - 



-- This system i s  used to represent an indicator lamp. This lamp i s  lit  
-- i f  and only i f  the single boolean inpu t  i s  true. The single boolean 
-- output i s  the same value as the input .  

-- This system i s  independent of a l l  other systems. 

-- Here i s  the t r u t h  table for this system: 

, -- 
-- 
-- 

indicator-in ------ > indicator-out -- 
-- ------------ ---- -- -- -- --- 

f a1 se 
true 

-- 
-- 
-- 
begin 

false 
true 

block anchor i s  general 
begin 
attribute l i g h t  i s  basetype boolean; 
line operand i s  mode inpu t  basetype boolean; 
line result i s  mode output basetype boolean; 

end anchor; 

external indicator-in i s  anchor.operand; 
external indicator-out i s  anchor .result; 

ruleset simulate i s  
beg i n  
rule s-1 i s  
begin 

i f  true then 
begin 
anchor .result := anchor .operand; 
anchor.light := anchor.operand; 

end; 
end i f ;  

end s-1; 
end simulate; 

ruleset diagnose i s  
begin 

rule d-1 i s  
begin 

i f  (anchor .result ,'= anchor .operand) then 
beg i n  
display "failure detected: indicator-system (result)"; 
failure := true; 
return; 

end; 
end i f ;  

end d-1; 

rule d-2 i s  
beg i n  

i f  (anchor . l i g h t  /= anchor .operand) then 
begin 

- 58 - 



display "failure detected: indicator - system ( l i g h t  ) " ;  
failure := true; 
return; 

end; 
end i f ;  

end d-2; 

end diagnose; 

end indicator-system; 

blocktype indicator-module-type i s  general 
begin 

l ine indicator-in i s  mode input basetype boolean; 
line rndicator-out is mode output basetype boolean; 
subsystc-a indicator-system; 

end indicator-module-type; 

system or-3-system is ( s e e  Figure 4 .6 )  -- 
-- This system i s  u s e d  to represent an OR gate w i t h  three inputs. An OR 
-- gate w i t h  three boolean inputs produces the logical sum of i t s  inputs 
-- and sets the single boolean output t o  this value. 

-- This system i s  independent of a l l  other systems. 

-- Here i s  the truth table for this system: 

-- or - -  3 i n 1  or - 3-in2 or-3-in3 ------ > or-3put 

-- 
-- 
-- 
-- -------- -------- -------- -- -- -- -- 

begin 

f a1 se 
true 
f a1 se 
true 
f a1 se 
true 
false 
t r u e  

false 
false 
true 
true 
f a1 se 
false 
true 
t r u e  

f a1 se 
f a1 se 
f a1 se 
f a1 se 
true 
true 
true 
t r u e  

block anchor i s  general 
begin 

l i n e  opl is mode input basetype boolean; 
l i n e  op2 is mde input basetype boolean; 
l i n e  op3 is mode input basetype boolean; 
l ine result is mode output basetype boolean; 

end anchor; 

external or-3-inl is anchor.op1; 
external or-3-in2 i s  anchor.0~2; 
external or-3-in3 i s  anchor.0~3; 
external or-3-out i s  anchor.result; 

ruleset simulate i s  
beg i n  

fa lse  
true 
true 
true 
true 
true 
true 
t r u e  

- 59 - 



rule s-1 is 
begin 

i f  true then 

end i f ;  
end s-1; 

end simulate; 

anchor .result := anchor .opl or anchor .op2 or anchor .op3; 

ruleset diagnose i s  
begin 
rule d-1 i s  
begin 

i f  (anchor .result /= anchor.op1 or anchor.op2 or anchor.op3) then 
beg i n  
display “failure detected: or-3-syst em” ; 
failure := true; 
re t u r n  ; 

end; 
end i f ;  

end d-1; 
end diagnose; 

end or-3-syster~; 

begin 
blocktype or-3-module-type is general 

line or-3-inl i s  mode input basetype boolean; 
line or-3-in2 is mode input basetype boolean; 
line or-3-in3 i s  made input basetype boolean; 
line or-3-out i s  mode output basetype boolean; 
subsystem or-3-system; 

end or-3-module-type; 

system %or-system is  (see Figure 4 .7 )  -- 
-- Tnis system is used  to represent an XDR gate. An #3R gate takes two -- binary inputs and produces a single Unary output that represents the -- exclusive-or (either b u t  no both) of the inputs. 

-- This system is idopendent of a l l  other systmr. 

-- Here is the t r u t h  table for this system: 

-- xor-in1 wor-in2 ------ > wor-out 

-- 
-- 
-- 
-- ------- ---.--- ------- 
-0 false false 

true f a1 se -- false true -- true true 

b i n  

-- 

-- 

false 
true 
true 
f a1 re 

block anchor is general 
begin 
line opl i s  mode input  basetype boolean; 
line op2 i s  d e  i n p u t  basetype boolean; 

- 60 - 



line result is mode output basetype boolean; 
end anchor; 

external xor-in1 is anchor.op1; 
external xor-in2 is anchor.0~2; 
external xor-out is anchor .result; 

ruleset simulate is 
beg in 
rule s-1 is 
beg in 
if true then 

end if; 
end s-1; 

end simulate; 

anchor-result := anchor.op1 xor anchor.op2; 

ruleset diagnose is 
begin 
rule d-1 is 
beg in 
if (anchor.result /= anchor.op1 xor anchor.op2) then 
begin 
display "failure detected: xor-system"; 
failure := true; 
return ; 

end; 
end if; 

e?ld d 1; 
end diagnose; 

end xor-system; 

blocktype xor-module-type is general 
beg in 
line xor-in1 is mode input basetype boolean; 
line xor-in2 is mode input basetype boolean; 
line xor-in3 is mode input basetype boolean; 
line xor out is d e  output basetype boolean; 
subsystem xor-system; 

end xor-module-type; 

systear value-system is (see Figure 4.8)  
begin 

block indicator-module-a is type indicator-module-type; 
block indicator-module-b is type indicator-module-type; 
block indicator-module-c is type indicator-module-type; 

external Val-in a is indicator-module-a.indicator-in; 
external Val-inlb is indicator-module-b. indicator-in; 
external val - -  in c is indicator-module-c.indicator-in; 
external Val-out-a is indicator-module-a.indicator-out; 
external Val-out-b is indicator-modu1e-b.indicator-out; 
external Val-out-c is indicator-module-c.indicator-out; 

- 61 - 



end value-system; 

system result-systsm is (see Figure 4.9) 
beg in 

block indicator-module-a is type indicator-module-type; 
block indicator-module-b is type indicator-module-type; 
block indicator-module-c is type indicator-module-type; 

external res-in-a is indicator-module-a.indicator-in; 
external res-in-b is indicator-mcdule-b.indicator-in; 
external res-in-c is indicator-mcdule-c.indicator-in; 
external res-out-a is indicator-module-a.indicator-out; 
external res-out-b is indicator-module-b.indicator-out ; 
external res-out-c is indicator-module-c.indicator-out; 

end result-system; 

systen siun-generation-system is (see Figure 4.10) 
begin 

block xor-module-1 is type xor-module-type; 
block xor-module-2 is type xor-module-type; 

path from xor-module-l.xor-out to xor-module-2.xor-inl; 

external sg-in-a is xor-module-l.xor-in1; 
external sg-in-b is xor-module-l.xor-in2; 
external sg-in-c is xor-module-2.xor-in2; 

end s m-gen er at ion- sy s t em ; 

system excess-generation-system is (see Figure 4.11) 
begin 

block fork-module-1 is type fork-module-type; 
block fork-module-2 is type fork-module-type; 
block fork-module-3 is type fork-mcdule-type; 

block and-mcdule-1 is type and-module-type; 
block and module-2 is type and-module-type; 
block andImodule-3 is Pype and-module-type; 

block or-3-module is type or-3-module-type; 

path from fork-module-l.fl to and-module-2.a-inl; 
path from fork-module-l.f2 to and-module-3.a-inl; 

path from fork-module-2.fl t o  and-module-l.a-in1; 
path from fork-mcdule-2.f2 to and-module-3.a-in2; 

path from fork-module-3.fl to and-module-1.a-in2; 
patn from fork-mcdule-3.f2 to and-module-2.a-in2; 

wrternki eg-in-a is fork-nodule-1.f-in; 
external eg-in-b is fork-module-2.f-in; 

- 62 - 



external eg-in-c is fork-module-3.f-in; 
external eg-out is or-3-module.or-3-out; 

end excess-generation-system; 

block value-module is general 
beg in 
line Val-in-a is mode input basetype boolean; 
line Val-in-b is mode input basetype boolean; 
line Val-in-c is mode input basetype boolean; 
line Val-out-a i s  mode output basetype boolean; 
line Val-out-b i s  mode output basetype boolean; 
line Val-out-c is mode output basetype boolean; 
subsystem value-system; 

end value-module; 

block result-module is general 
beg in 
line res-in-s is mode input basetype boolean; 
line res-in-x is mode input basetype boolean; 
line res-out-s is mode output basetype boolean; 
line res - -  out x is mode output basetype boolean; 
subsystem result-system; 

end result-module; 

block sum-generation-module is general 
begin 
line sg-in-a is mode input basetype boolean; 
line sg-in-b is mode input basetype boolean; 
line sg-in-c is nrxie input basetype booltsn; 
line sg-out is mode output basetype boolean; 
subsystem sum-generation-system; 

end sum-generation - module; 

block excess-generation-module is general 
begin 

l i n e  eg-in-a is mode input basetype boolean; 
line eg in-b is W e  input basetype boolean; 
line eg-in-c is d e  input basetype boolean; 
line eg-out is d e  output basetype boolean; 
subsys t&n excess-generation-system; 

end excess-generation-ntcdule; 

external adder-a is value-mdule.va1-in-a; 
external adder-b is value-module.va1-in-b; 
external adder-c is value-module.va1-in-c; 
external adder-s is result-mcdule.res-out-s; 
external adder-x is result-mdule.res-out-x; 

-- The following ruleset handles simulation at the root level. -- 
ruleset simulate is 
begin 
rule s-1 is 
begin 

- 63 - 



if true then 
begin 
elaborate value-module using simulate; 
elaborate sum-generation-module using simulate; 
elaborate excess-generation-mule using simulate; 
elaborate result-module using simulate; 

end; 
end if; 
end s-1; 

end simulate; 

-- 
-- The following ruleset handles diagnosis at the root level. 
ruleset diagnose is 
-- 
begin 

rule diagnose-setup is 
begin 
if true then 

end if; 
failure := false; 

end diagnose- set up ; 

rule check-value-module is 

if (not failure) then 
beg in 

begin 
elaborate value-module using diagnose; 
if (failure) then 

end if; 
display "failure detected: adder (value-module)"; 

e."d ; 
end if; 
end check-value-module; 

rule check-sum-generation-module is 
beg in 
if (not failure) then 
begin 
elaborate sum-generation-module using diagnose; 
if (failure) then 

end if; 
display "failure detected: adder (sum-generation-module)"; 

end ; 
end if; 

end check-sum-generation-module; 

rule check-excess-generation-malule is 
begin 
if (not failure) then 
begin 
elaborate access-generation-module using diagnose; 
if (failure) then 

end if; 
display "failure detected: adder (excess-generation-module)"; 

- 60 - 



end; 
end if; 

end check-excess - generation-module; 

rule check-result-module is 
begin 
if (not failure) then 
begin 
elaborate result-module using diagnose; 
if (failure) then 

end if; 
display "failure detected: adder (result-module)"; 

end; 
end if; 

end check-result-module; 

end diagnose; 

end binary-adder-system; 

. 

- 65 - 



L 

Figure 4.1 

- 66 - 



adder-x 
ff0-6( adder-s 

I- 4 4 4 
Y 1 & & 

Figure 4.2 

- 67 - 



b II 

Pigura 4.3 



f1 n 
CT0-6t 

J L J  

e 
5 
r 

L 
a> m 
'0 a 

u!-l 

Figure 4 . 4  

- 69 - 



indicator-out b t n - l  

J 

s 
0 

c 1 

- 70 - 



P - b  P 

C - .. 
(3 
E 

m -1 

b 
2 
-1 

8 
B 
f 

'-1 
I 

c) 

3 

5 

bl 

I 
(3 

- 
I 

1 
0 
F) 

.. 

d 

- 71 - 



xor-out 
910-6 

1 

zU!-JOX 

Figure 4.7 

- 72 - 



Val-out-a Val-out-b vat-out-c L TO-1 
L J  1 J  L J  

.- 
C 

0 
-1 L 

3 
.- P 

w 

I 
0 

.. 
5 

3 
5 
.- P 

m 
I 

Q) 

C - 

L a c 
0 U .- n 

- 1 3  - 



res-out-s res-out-x 

c 

x-u!-su 

Figure 4.9 



.I 

I 
cu 
c -. 

1.1, 
B-U!-6$ q - q a  a-ur-86 

Figure 4.10 

- 7s - 



- 76 - 



5 .  RULE SET PROCESSOR PROTOTYPE ARCHITECTURE 

The Rule Set Processor prototype (RSP I >  represents the working software 
component of the resul t  of our investigation into the development of a tool 
for  constructing real  time expert  system software f o r  time c r i t i c a l  
applications. 

The RSP prototype i s  a single computer program wr i t t en  i n  t he  Ada 
programming language. It was developed and tested on a Sun Microsystems SUN 
3/160, a system that uses a Motorola pic68020 microprocessor and four megabytes 
of memory for a hardware platform along w i t h  Sun UNIX 3 0 4  as a software 
development environment. The Ada compiler i n  use i s  from Verdix Incorporated. 
The RSP Ma source i s  intended to be portable t o  any system that passes the  
standard Ada validation su i te  and possesses reasonable memory and f i l e  
capabilities. 

5.1 RSP I Architecture Overview 

Written according t o  commonly accepted modular  programming style, the 
prototype i s  implemented as  a short main program along wi th  t h i r ty - two  
separate Ada packages organized according to  functional purpose, The r a i n  
program, Ada procedure "rsp", occupies a single source f i l e ;  each package 
occupies two separate files: a package specification source f i l e  and a package 
body source f i le .  These sixty-five f i les  together contain three hundred and 
sixteen subprograms and. a t o t a l  of 14,355 source lines. The coding portion 
required approximtely three months of concerted effort w i t h  pa ra l l e l  testing. 

T h i s  i s  a brief description of the Ada source f i les  used i n  the rule set 
project. The functional interrelat ions of the packages a re  described i n  
f u r t h e r  in t h i s  section of this document. 

The main program i s  found i s  the f i l e  "rsp.an. A l l  of the other Ada 
source f i l e s  a re  paired: for each package, there i s  a single specification 
f i l e  and a single body f i le .  Each package specification filename i s  sixteen 
characters long. The f i r s t  four characters are "rsp-" and the last eight  
characters are "gkg-s.a". The f i f t h  through eighth characters ident i fy  the 
contents of the f i l e .  The corresponding package body f i l e  has the same name 
except the fourteenth character i s  a "b" (for body) ins tead  of an "s" ( fo r  
specif icat ion)  . Each package name i s  twelve characters long starting with 
"rsp-" and ending with " g k g "  w i t h  the middle four characters i d e n t i f y i n g  the 
contents of the f i l e .  Thus ,  the package name is taken from the filename by 
dropping the  las t  four characters. 

A package may be referred to i n  abbreviated w e r  by supplying only i t s  
four dis t inguishing letters: for example, package rsp-contgkg (specification 
i n  the f i l e  rsp-cont-pkg-s.a and body i n  the f i l e  rsp-contgkg-b.a) may be 
indicated by the simpler t e r m  "package CONT". A l l  subprograms contained i n  
t h e  packages s tar t  with the four characters "rsp-" and continue w i t h  the next 
five characters "XXXX-" where the four X let ters are the four d i s t i n g u i s h i n g  
l e t t e r s  of the package that  hold the definit ion of the subprogram. This 
subprogram naming convention allows for the imediate recal l  of the defining 
package of any function or procedure. 

A l l  s i t e  dependencies a r e  declared i n  the  f i r s t  s ec t ion  of t he  
specification of rsp-def s-pkg i n  the f i l e  rsp-def sgkg - s.a. The complete 

- 77 - 



I history of the Ada source f i l e s  i n  the RSP prototype i s  given i n  Appendix C .  
These dependencies include definition of the integer and f loat  types used by 
the project. The rule set project also uses the package "text-io" from t h e  
standard Ada environment. 

5.2. ISD Substructures 

The program wri t ten by the RSP user i n  the User System Description 
Language ( U S D L )  describes a s ing le  system. (The acronym i n  use for  t h i s  
program i s  "USD" for User System Description.). This single system, referred 
to as  the root system af ter  i t s  compilation by the RSP, i s  represented a s  a 
complex i n t e r n a l  system descr ipt ion ( I S D ) .  The I S D  generated by the RSP 
contains a l l  the  information necessary t o  represent the described system 
comple t e ly  i n c l u d i n g  both i t s  topological information ( s t r u c t u r e s  and 
connectivity) and i t s  procedural informtion (rules and statements). The I S D  
also contains the s ta t ical ly  allocated storage required for the interpretation 
of the USD. 

The I n t e r n a l  System Description i s  b u i l t  from l i n k i n g  together an 
assemblage of objects of several  d i f f e r e n t  Ada record types. Most record 
types correspond d i r e c t l y  wi th  USDL structures, and i n  those cases where an 
arbi t rary number of language structures may appear i n  the same context (e .g . ,  
a sequence of statements or rules) these records are connected together i n  a 
two way linked l i s t .  The head of such a l is t  corresponds t o  t h e  f i r s t  i t e m  
encountered i n  t h a t  context of a pa r t i cu la r  type, and t h e  t a i l  of a l i s t  
corresponds to  the l a s t  item so encountered. Some object  types used i n  the 
I S D  may a l s o  r e fe r  t o  i n t e r i o r  objects of the same type, either directly or 
i n d i r e c t l y ,  t hus  a l lowing  for t h e  power of t o p o l o g i c a l  r e c u r s i v e  
representation. 

The ent i re  ISD i s  b u i l t  via dynamic allocation of i t s  substructures. The 
s ing le  system i n  the USD program corresponds to  the anchor of the ISD - an 
object of type "syst-t" (a system record) that represents t he  root  system of 
the  I S D .  A l l  p a r t s  of t h e  ISD are  reached through the pointer to this root 
system record. 

The substructure  record types l i s t e d  i n  t h i s  sect ion a r e  those most 
closely connected w i t h  syntactic structures i n  the USDL. Other record types 
a re  also i n  use but are not l is ted here for sake of brevity. 

5.2.1 ISD Substructure: System Record/Ada type "syst-t" 

For the root system and for each subsystem i n  the model, an Ada record of 
type "syst-t" i s  allocated and i n i t i a l i z e d .  Note t h a t  system records (and 
t h e i r  conten ts )  w i l l  be present i n  the ISD for subsystem indica t ion  v i a  
duplication fran their  o r i g i n a l  de f in i t i on .  T h i s  means t h a t  the "syst- t"  
s t r u c t u r e  b u i l t  by parsing i s  used a s  a template; copies are made of this 
template for each use of the system as as subsystem representation of a block. 
These records a r e  connected i n  linked l i s t s  (when associated w i t h  a parent 
system); and with descriptions of blocks/blocktypes (when associated w i t h  a 
subsystem representation). 

The syst-t  record contains the following information: 1) The use r  
assigned name of the system; 2 )  A linked l i s t  of blocks; 3)  A l inked  l is t  of 

- 78 - 



blocktypes; 4 )  A l inked  l i s t  of declare items; 5 )  A linked l i s t  of paths; 6 )  A 
l i n k e d  l i s t  of r u l e s e t s ;  7 )  A l i n k e d  l i s t  of systems; 8 )  A linked l i s t  of 
externals; 9)  Links to previous and next system records. 

5.2.2 ISD Substructure: Block Record/- type "comp - t" 

An objec t  of A d a  type "comp-t" (from "component") i s  a l loca t ed  and 
at tached t o  the ISD for every block i n  the modeled system. These records are 
connected in l inked  l i s t s  and are associated with systcrms. A "comp-t" record 
contains  the  following: 1) The u s e r  supplied name of the block; 2 )  The user 
supplied name of the block's parent (if any!; 3 )  A l i n k  to the type parent (if 
any);  4 )  A l i n k  to the description (attr ibutes,  lines, subsystem); 5 )  A count 
of connection points ( l ines ,  i n  afld out);  6 )  Links t o  previous and next block 
records. 

5.2.3 ISD Substructure: Blocktype RecordkAda type "ctyp-t" 

An object  of Ada type "ctyp-t" (from "component type") i s  allocated and 
attached t o  the ISD for every blocktype i n  the modeled system. These records 
a r e  connected i n  linked l i s t s  and a re  associated with systems. A "ctyp-t" 
record contains the following: 1) The user supplied name of the  blocktype; 2) 
The user supplied name of the blocktype's parent ( i f  any); 3) A l ink to the 
type parent (if any) ;  4 )  A l i n k  t o  the descr ipt ion ( a t t r i b u t e s ,  l i n e s s  
subsystem); 5 )  A count of connection -points ( l ines ,  i n  and out) ;  6 )  Links t o  
previous and next blocktype records. 

5.2.4 ISD Substructure: Declare Item Record/Ada type "decl-t" 

An object of Ada type "decl-t" (from "declare item") i s  a l loca ted  and 
at tached t o  the  ISD for every declare  item i n  t h e  modeled system. These 
records a r e  connected i n  linked l i s t s  and a r e  associated w i t h  sys tems,  
r u l e s e t s ,  and r u l e s .  A "de l - t "  record contains the following: 1) The use r  
supplied name of t h e  declare i t e m ;  2)  The basetype of the i tear;  3 )  The current 
value associated w i t h  the item; 4 )  Links  t o  the  previous and next declare 
items. 

5.2.5 ISD Substructure: Path Record/Ada tm "path-t" 

An object of Ada type "path t" (from "path connection") i s  a l located and 
at tached t o  the  ISD for every path i n  the modeled system. These records a re  
connected in linked lists and are associated with systcms. A "path-t" record 
contains  the following: 1) The user supplied name of the  path ( i f  any); 2) A 
l i nk  t o  the source block; 3 )  A l i n k  t o  the  source l i n e ;  4 )  A l i n k  t o  the  
destination block; 5 )  A link t o  the destination l ine;  6)  Links to the previous 
and next paths. 

5 -2.6 ISD Substructure: Rufeset Record/Ada type "rset-t" 

An object of Ada type "rset-t" (from "ruleset") is allocated and attached 
t o  t h e  ISD for  every ru l e se t  i n  the modeled system. These records a r e  
connected i n  l inked l i s t s  and are associated w i t h  systems and r u l e s e t s .  A 

- 79 - 



" r s e t - t "  record contains t h e  following: 1) The user supplied name of the 
ruleset; 2 )  A linked l i s t  of declare items; 3 )  A linked l i s t  of ru l e s ;  4 )  A 
linked l i s t  of rulesets; 5 )  Links to  previous and next rulesets. 

5.2.7 ISD Substructure: R u l e  Record/Ada type "rule-t" 

An'object of Ada type "rule-t" (from "production rule") i s  allocated and 
attached t o  the ISD for every rule i n  the modeled system. These records a r e  
connected i n  linked l i s t s  and are associated w i t h  rulesets. A "rule-t" record 
contains the following: 1) The user supplied name of the  ru le ;  2 )  A l inked 
l i s t  of declare items; 3) A l ink t o  the expression that forms the tes t  of the 
rule; 4 )  A l i n k  to the affirmative statement ("then part"); 5 )  A l i n k  t o  t he  
alternative statement ("else part", i f  any); 6 )  Links to the previous and next 
rules. 

5.2 .8  ISD Substructure: External Record/Ada type "xtrn-t" 

An object  of Ada type "xtrn- t"  (from "externa l" )  i s  a l l o c a t e d  and 
at tached t o  the  ISD for every external i n  the modeled system. These records 
are  connected i n  linked l ists  and are associated w i t h  systems. An "x t rn  t" 
record contains the following: 1) The u s e r  supplied name of the external; 2 )  
A l i n k  t o  the associated block; 3 )  A l i n k  to  the associated l ine;  4 )  Links t o .  
previous and next  externals. 

- 

5.3 Top L e v e l  Control 

RSP prototype execution begins wi th  the procedure rsp i n  the Ma source 
f i l e  rsp.a. This procedure forms the main program of the prototype and i t  
contains  only a few statements. Procedure rsp f i r s t  ca l l s  an i n i t i a l i ze r  
(rsp-cont-init), then c a l l s  the  main command cycle (rsp-cont-cycle),  and 
f i n a l l y  c a l l s  a terminator rout ine (rsp-cont-term). This procedure also 
provides for trapping exceptions unhandled elsewhere. 

The package CONT provides for the high level control of the prototype. 
This package contains the main i n i t i a l i z e r  con t ro l l e r  ( rsp-cont- ini t )  t h a t  
o rches t r a t e s  a l l  required i n i t i a l i z a t i o n  functions by c a l l i n g  subsidiary 
in i t ia l iza t ion  routines of a l l  other packages as appropriate.  Package CONT 
a l s o  contains  the main terminator rout ine (rsp-cont-term) tha t  functions 
analogously to  the in i t ia l izer  . 

Package CONT contains the procedure rsp-cont-cycle that implements the 
command read-parse-dispatch loop. A command inpu t  l i n e ,  e i t h e r  from a 
configurat ion f i l e  or from the user,  i s  read by the routine rsp-cont-read. 
Tokens i n  the comnand line are parsed by rsp-cont-token-parse and checked by 
rsp-cont-token-check. The camand dispatch i t se l f  i s  handled by t h e  routine 
rsp-cant-dispatch. Each nonblank comand line i s  viewed as a sequence of one 
or more tokens of which the  f i r s t  i s  in te rpre ted  a s  one of the available 
couxnands and following tokens are considered parameters to that coarnand. Each 
command i s  f u l l y  processed a f t e r  dispatch and before continuing the read- 
par se-di spat ch loop. 

- 80 - 



5 . 4  Command Processinq 

A command read i n  and checked by package CONT i s  passed by the procedure 
rsp-cont-dispatch i n t o  a command spec i f ic  procedure i n  package DPCR for  
processing. For each command type ava i lab le ,  there  i s  a co r re spond ing  
procedure i n  package DFCR by the name of "rsp-dpcr-X", where X represents the 
spelling of the comnand. For example, the procedure rsp-dpcr-exit handles the  
"exit" command. 

Some of the ccuunands available require only a small amount of processing 
code, and t h e i r  implementations can be e n t i r e l y  enclosed i n  their  single 
handling routine. Other commands require much more extensive processing, and 
so involve many other portions of the prototype. I n  a l l  cases, the command 
processing required i s  completed upon the return from the  ca l led  dispatch 
routine. 

5 . 5  Parsing and Compilation 

The two main f u n c t i o n s  of t h e  RSP proto type  a r e  compilation and 
interpretation. The cunpilation process is the translation of the User System 
Description source into an In te rna l  System Description and i s  performed by the 
recursive descent parser (from package PARS). The in te rpre ta t ion  of t h e  I S D  
i s  handled by the interpretation subsystem (from package EXEC). 

The t e r m  "parsing" is used to refer to  the generation of the de r iva t ion  
sequence by which the USD source i s  bu i l t  from the syntactical specification 
of the language. The word "compilation" indicates the processing, executed i n  
p a r a l l e l  and a s  par t  of the parsing ac t iv i t ies ,  that converts the externally 
represented (USD source) semantics of a system i n t o  an internal representation 
( I S D ) .  The parsing detects syntactic errors and Bnsures that only correctly 
formed USDL sources can be then  sent t o  a l a t e r  i n t e rp re t a t ion  s tage;  the 
compilation forms the ISD so that the la ter  interpretation stage has samething 
to  work upon. 

A proposed function of f u r t h e r  RSP inves t iga t ion  i s  to  incorporate a 
"translation" capabili ty into the program. Such a translation f a c i l i t y  would 
use t h e  I S D  produced by the parser and compilation processing and "translate" 
t h i s  s t r u c t u r e  i n t o  an external  tex t  f i l e  t o  be used as a source  t o  a 
conventional software compiler. For example, a USD would be parsed, i t s  
generated I S D  i n t e rp re t ed ,  and the f i n a l  t es ted  v e r s i o n  would then  be 
t r ans l a t ed  into a language (e.g., Ada, FORTRAN, 1750 Assembler) t o  be f u r t h e r  
processed. 

5 .5 .1 Recursive Descent Parser 

The parsing and compilation of a USD source i s  d i rec ted  by use of t he  
"compile" command. T h i s  command causes the indicated user source t o  be 
parsed, errors t o  be detected ( i f  any), an ISD t o  be generated ( i f  no errors) ,  
and a l i s t i n g  output f i l e  to be producd. 

The mode of parsing i s  known as "recursive descent", a powerful technique 
for  processing those languages that have recursive definitions and that allow 
single symbol disambiguation of alternate grammatical derivations. The USDL,  
l i k e  many languages, has recursive de f in i t i ons  such as expressions within 

- 81 - 



expressions and systems within systems. The  USDL a l s o  has, by des ign ,  t h e  
above mentioned disambiguation property where it i s  easi ly  decidable (by the  
parser) which syntact ic  d e r i v a t i o n  i s  t h e  c o r r e c t  one a t  any po in t  i n  t h e  
p a r s e .  The  main reasons for  choice of the  recursive descent method are t h a t  
i t  can be quick ly  implemented and i t  can be e a s i l y  modified t o  allow f o r  
changes i n  t h e  language during the construction of the prototype. 

The recursive descent parser works in  a "top-down" f a s h i o n  - i t  s t a r t s  
w i t h  t h e  working assumption that it has a complete program, and then proceeds 
t o  f i l l  i n  the  specifics by ca l l ing  subsidiary routines to handle t h e  v a r i o u s  
s y n t a c t i c  forms included i n  a complete program. The scanning of the input 
source i s  a one pass, forward scan with no backup. Each syntact ic  form (e.g., 
a program, a system, a r u l e ,  an  expression) has a corresponding function i n  
t h e  p a r s e r .  Each of these func t ions  has a s p e c i f i c  task: t o  p a r s e  t h e  
corresponding syntact ic  form and t o  create a corresponding da ta  structure tha t  
holds t h e  semantic in format ion  from t h e  USD source f o r  t h a t  form. T h e  
r e t u r n e d  data structure i s  then connected t o  o t h e r  parts of the ISD under  
construction. The f i n a l  result i s  a complete ISD ready for  i n t e r p r e t a t i o n  o r  
t rans la t ion .  

, 

t h e  
i n i  t 

The parser i s  act ivated by a call t o  the procedure rspgars-compile from 
d i s p a t c h  r o u t i n e  rsp-dpcr-compile. This r o u t i n e  performs v a r i o u s  

i a l i z a t i o n  tasks f i rs t  and then calls the syntact ic  form parsing f u n c t i o n  
rsp-syst-rdp-syst  to  parse the  e n t i r e  USD source. When the  parsing function 
completes, i t  r e t u r n s  a p o i n t e r  t o  the  structure r e p r e s e n t i n g  t h e  pa r sed  
system descr ipt ion;  if no er rors  where detected during the parse, t h i s  pointer 
becomes t h e  root p o i n t e r  of t h e  e n t i r e  ISD. I f  one or more errors were 
detected, the ISD r tot  pointer remains nul l .  

The names of the  routines i n  the RSP that are u s e d  t o  p a r s e  a s y n t a c t i c  
form h a v e  a common f o r m a t .  E a c h  f u n c t i o n  name t a k e s  t h e  form 
"rsp XXXX rdp YYYY" where i s  t h e  defining package and YYYY i s  t h e  name 
(usua l ly-shor tened  t o  four letters) of the parsed syntact ic  form. For some 
examples, the rout ine r sp-pa th- rdpgath  pa r ses  a path d e s c r i p t i o n  and the  
r o u t i n e  rsp-expr-rdp-axpr p a r s e s  a general errpression. T a b l e  5.1 l i s ts  a l l  
such functions i n  the RSP prototype a long  w i t h  t h e  s t ructure  p o i n t e r  t ypes  
returned. 

Table  5 . 1 :  RSP Prototype Functions 

r s p  cap-rdp-comp returns  compptr-t (blocks) 
rspIctyp-rdp-ctyp returns  ctypptr-t (blocktypes) 
r s p  desc-rdp-attr re turns  a t t rp t r - t  (block attributes) 
r spIdesc-rdp-desc returns  descptr-t (block descriptions ) 
r s p  desc-rdp-line returns  l ineptr-t  (block l i nes )  
1: spIdesc-rdp-subs returns  subsptr-t (block subsystems 1 
rsp-expr-rdp-expl re turns  exprptr-t ( l eve l  1 expressions) 
r s p  expr-rdp-errp2 returns  exprptr-t ( leve l  2 expressions) 
rsp-expr-rdp-exp3 returns  exprptr-t ( level  3 espressions) 
rsp-expr-rdp-expl re turns  exprptr-t ( l eve l  4 expressions) 
rsp-expr rdp-errp5 returns  exprptr-t ( leve l  5 expressions) 
rsp-expr-rdp - -  exp6 re turns  exprptr-t ( leve l  6 expressions) 
rsprexpr-rdp-expr re turns  exprptr-t (general expressions) 
r s p g a t  h-rdpga t h  ret urns pathp tr-t (paths ) 
rspgrim-rdpgrim returns  exprptr-t (primary expressions) 
r s p  - rset-rdp-rset re turns  rsetptr- t  (rulesets) 

- 82 - 



T a b l e  5.1: RSP Prototype Functions (continued) 

rsp-rule-rdp-rule re turns  ruleptr- t  (rules! 
rsp-stmt rdp-advn re turns  stmtptr-t (advance statement) 
rsp-stmtlrdp-asgn re turns  stmtptr-t (assignment statement 1 
rsp-stmt rdp-bloc re turns  stmtptr-t (compound statement) 
rsp-stmtlrdp-call re turns  stmtptr-t (cal l  statement 
r sp  stmt-rdp-dfrl re turns  stmtptr-t (read statement) 
rsplstmt-rdp-dfwl re turns  stmtptr-t (write statement) 
rsp-stmt-rdp-elab re turns  stmtptr-t (elaborate statement) 
r s p  stmt-rdp-exit re turns  stmtptr-t ( e x i t  statement) 
rspIstmt-rdp-if te re turns  stmtptr-t (if -then-else statement) 
rsp stmt rdp-null re turns  stmtptr-t ( n u l l  statement) 
r s p l s t m t l r d p g u l s  re turns  stmtptr-t (pu lse  statement) 
r sp-stmt-rdp-rest re turns  stmtptr-t ( reset statement) 
rsp-stmt-rdp-rtrn re turns  stmtptr-t ( re turn  statement) 
r s p  stmt-rdp-scva re turns  stmtptr-t (accept statement) 
r s p l s  t m  t -rdp-scvd ret urns s tm t p  tr-t ( d i  splay stat emen t ) 
r s p  stmt rdp-stmt re turns  stmtptr-t (general  statement) 
r splsystrrdp-decl re turns  declptr- t  (declare i t e m )  
r sp-sys t-rdp-syst re turns  sys tp t r - t  ( system) 
rsp-xtrn-rdp-rtrn re turns  r t rnp t r - t  (ex terna l )  

Note tha t  some structure types are returned by more t h a n  o n e  f u n c t i o n .  
The p a r s e r  i s  organized  i n  t h i s  fashion so that the  r e l a t i v e l y  complex forms 
(s ta tements  and expressions) CM be handled i n  a d iv ide  and conquer s t ra tegy 
while r e t a in ing  a s ingle  data representation. 

Each of t h e  above p a r s i n g  r o u t i n e s  a r e  w r i t t e n  acco rd ing  to  a s i n g l e  
p l a n ,  a l t h o u g h  t h e  d e t a i l s  w i l l  d i f f e r  somewhat fo r  each f u n c t i o n .  The 
ac t ions  of t h i s  general  plan are: 

1) I n i t i a l i z e  a data structure of the  type corresponding to the  syn tac t i c  
form t o  be parsed; 

2 )  I f  a p p r o p r i a t e ,  tes t  t h e  c u r r e n t  source i n p u t  t o  e n s u r e  that t h e  
r o u t i n e  was called i s  t h e  c o r r e c t  r o u t i n e  for t h e  i n p u t  - and report a n  
i n t e r n a l  consis:ency f a u l t  i f  t he  wrong rout ine was called; 

3) Scan ard record any items associated with a prologue ( i f  a n y )  of t h e  
syn tac t i c  form; 

4 )  For each item scanned i n  the  source input, either record i n f o r m a t i o n  
d i r e c t l y  i n t o  t h e  local working data structure, or invoke subsidiary pars ing 
rout ines  to  construct  t h e  a p p r o p r i a t e  data s t ructures  and then  r e c o r d  t he  
r e su l t an t  pointer  values into'  t he  local data structure; 

5) Scan and record any items associated w i t h  a ep i logue  (if any)  of t h e  
syntac t ic  form; 

6 )  Return as the  function result a pointer  t o  the  working data s t ruc ture  
c o r . s t r u c t e d  t o  r e p r e s e n t  t h e  informat ion  ga ined  from t h e  p a r s e  of the 
s y n t a c t i i  form. 

(For each s t e p  i n  t h e  p l a n ,  complete  s y n t a c t i c  and semant ic  error 
de tec t ion  and report ing also takes place.)  

- 83 - 



5 .5 .2  Lexigraphical Analyzer 

The R S P  prototype uses a lexigraphical analyzer (a.k.a. lexer) to provide 
an interface between the main functions of the parser and the text of the USD 
source. The main function of the lexer i s  to  read characters sequentially 
from the user source and to  detect and assemble lexical  tokens. Lexical 
tokens are the atomic syntactic forms of the U S D L .  These tokens include: 
l i t e r a l  values ( integers ,  f loats ,  booleans, and strings), identifiers (user 
supplied names), reserved words (keywords), and reserved symbols (punctuation 
and the end-of -f i l e  mrker) . 

The lexer resides i n  package LEXR.  The main lexer subprogram i s  t h e  
procedure rsp-lexr-next-token which scans the user source and generates a 
value for the variable "tokn" (also defined i n  package L E X R ) .  This var iable  
i s  declared t o  be of the record type "tokn-t" and i t s  components contain the  
pertinent information a b o u t  the token required for parsing and ISD generation. 
The lexer also detects and reports certain simple source errors. A s  the lexer 
scans the i n p u t  t ex t  lines i t  also sends these lines to  the  l ist ing generation 
system so that a l ist ing f i l e  may be produced. 

5 . 5 . 3  Structure Allocation and Initialization 

The data  structures used t o  construct the ISD require routines for 
allocation and initialization. These routines a re  located i n  package ARCH 
(from "archi tecture") .  For each type of record that can be used i n  t h e  ISD, 
there i s  a corresponding routine that allocates and i n i t i a l i z e s  storage for 
t h a t  type.  These routines a re  called by the parser a s  required. The 
specification por t ion  of package ARCH contains  a l l  of t h e  Ada type 
d e c l a r a t i o n s  f o r  these record types.  The motivating idea for t h i s  
centralization i s  aid developent and maintenance efforts by simplifying the 
layout of the strongly interrelated definitions required for the  ISD. 

5.5.4 Error Management 

The RSP prototype provides for the detection and reporting of those 
e r r x s  associated with parsing (lexical, syntactic, and semantic). The RSP 
detects and reports sixty-three different error types. Error processing i s  
emlosed i n  package ERRS. 

When zn error i s  detected, a call to the procedure rsp-errs-scangost i s  
made with the error type and the error t ex t  position passed. This procedure 
records the  error information along with other error informtion for that l ine 
( i f  any). This  collection of information (error type index / source column 
number) i s  saved for f u r t h e r  l ist ing processing so that the error indications 
are reported to the user i n  a useful fashion. 

5 .5 .5  Scope Management 

Some USDL syntactic forms have an associated ,lexical scope. A l ex ica l  
scope i s  the contiguous source region where a name is available. For example, 
a name associated wi th  a declare item i n  a ruleset i s  available only i n  the 
szo?e of tha t  ruleset ,  while the name of a declare item i n  a system i s  
available throughout the system. In order to detect various semantic e r rors  

- 84 - 



and to correctly generate the ISD, the parser requires knowledge of the 
current scope and of enclosing scopes. 

Scope information i s  processed by routines i n  package SCOP. This package 
has routines to push (establish) a new scope and to  pop (d ises tab l i sh)  the 
current scope. These routines a re  called by those parsing routines that 
handle syntactic forms which have associated scopes. A l s o  included a re  
functions that search for ident i f ie rs  throughout the enclosing scopes to 
locate corresponding ISD structures. The scoping information handled here i s  
recording i n  a linked l i s t  data structure, one record for each scope. This 
l i s t  i s  the only data structure i n  the RSP other than the ISD that  records 
information about the USD source. 

5.5.6 Source Listing Processing 

The RSP prototype generates an output l i s t i n g  text f i l e  as p a r t  of the  
compilation process. T h i s  generation i s  performed by routines i n  package 
LIST. The output f i l e  contains several items: 

1) One informative header that identifies t h e  f i l e  and the version of 
the RSP program responsible for the compilation; 

2 )  A l ist ing of the  user source wi th  l ine numbering; 

3 )  When required, error indicators composed of error type indices (small 
integers) adjacent to the line and column of detection i n  t h e  user 
sou r c e ; 

4 )  When required, a decoder table  a f t e r  the end of the user source 
l i s t i n g  t h a t  contains  e a r l i e r  reported e r r o r  type i n d i c e s  
(numerical ly  ordered) along wi th  corresponding descriptive messages. 

5.6 ISD Interpretation 

The RSP prototype creates an ISD upon the successful  compilation of an 
error-free user system description. This ISD can then be interact ively 
interpreted by the ruleset  interpretation routines. In t e rp re t a t ion  i s  
t r i gge red  by one of t h e  appropriate commands, each of which s t a r t s  the 
interpretation of a particular ruleset  embedded in t h e  root level  system. 
These commands a re :  "preset", "diagnose", and "simulate", each of which 
ini t ia tes  the interpretation of the ruleset  w i t h  t h e  same name. The entry 
point for ruleset interpretation i s  the procedure rsp-exec-rset; it i s  called 
wi th  a pointer into the ISD that identifies the data structure corresponding 
to the indicated ruleset. 

5.6.1 ISD Sequencinp 

The c o r r e c t  interpretat ion of a ruleset  requires tha t  the various 
portions of the ruleset a re  interpreted using the correct ordering. This 
means t h a t  cer ta in  s t a t i c  and dynamic information concerning ru les  and 
statements may cause the path of interpretation to vary from the normal top- 
down sequential convention. In a l l  cases, the processing of any part of 

- as - 



interpretive code i n  the ISD corresponds to a potentially recursive c a l l  of a 
procedure i n  the RSP prototype. 

A ruleset is interpreted (rsp-exec-rset) by interpret ing i t s  rules  i n  
top-down order u n t i l  some condition occurs to  suspend, abort, or normally 
terminate ruleset interpretation. After that last rule i s  processed, the flow 
of interpretation returns to the invoker of the ruleset. I f  the ruleset was 
invoked by an interactive comnand, interpretation terminates and control i s  
returned to the interactive level. 

A rule i s  interpreted (rsp-exec-rule) by f i r s t  evaluating (rsp-eval-expr) 
i t s  t e s t  expression and then ei ther  executing (rsp-exec-stmt) the rule 's  
affirmative statement ( t e s t  true) or i t s  alternative statement ( tes t  fa lse) .  

A statement (rsp-exec-stmt) i s  interpreted by a dispatch to  a routine 
that corresponds to the statement k i n d  begin interpreted.  Most statement 
kinds do not modify the normal flow of interpretation, b u t  a few do change 
this flow. 

A compound statement (rsp-exec-bloc) is interpreted by processing each of 
i t s  enclosed statements i n  topdown order, subject to possible diversions by 
these enclosed statements. 

An if-then-else statement (rsp-exec-ifte) i s  interpreted i n  a manner 
analogous to a ru l e ' s  interpretat ion.  I t s  expression i s  evaluated and t h e  
appropriate statement i s  then interpreted. 

A re turn  statement (rsp-exec-rtrn) i s  interpreted by the immediate 
termination of the enclosing ruleset and a return to the ruleset invoker. 

A n  e x i t  statement (rsp-exec-exit) i s  interpreted by the immediate 
termination of the inclosing ruleset  and of a l l  invoking rulesets  and the 
termination of the interpretation session with a return to t h e  interactive 
comnand level. 

A c a l l  statement (rsp-exec-call)  i s  interpreted by the temporary 
suspension of the enclosing ruleset and a transfer to another ru lese t .  When 
the cal led ruleset  concludes, interpretation (generally) returns t o  the 
caller.  

An elaborate statement (rsp-exec-el&) i s  interpreted i n  the same fashion 
as the ca l l  statement except that the current system level i s  changed t o  a 
subsystem representation of the indicated block thus allowing multilevel 
representation of systems and system knowledge. When the elaborated ru lese t  
concludes, interpretation (generally) returns to the caller, and the current 
system level returns t c  i t s  prior status. 

5 . 6 . 2  ISD Expression Evaluation 

Various par ts  of the ISD (declare items, l ines ,  l i n e  h i s t o r y ,  and 
a t t r i b u t e s )  w i l l  assume scalar values. These objects a r e  col lect ively 
referred to  as variables as their values may vary wi th  interpretation. These 
v a r i a b l e s ,  along w i t h  l i t e r a l s  (constant values) may be referenced and 
combined i n  expressions i n  order t o  represent the numerical and logical  

- 86 - 



aspects of the system model. (Most RSP interpretive evaluation 1s coded i n  
package EVAL.) 

An expression i s  an arrangement of one or more of these values along w i t h  
zero or mre  operator symbols according to the syntactic specification of the 
USDL.  Expressions a re  p r s e d  by a set of routines that are organized into a 
hierarchy that  correctly records the desired evaluat ion precedence by 
constructing an expression tree with nodes representing operators and operand. 
During interpretation, an expression tree i s  evaluatd (rsp-eval-expr) using a 
normal recursive i n f i x  transversal starting a t  the root of the tree. For each 
of t h e  available operator kinds (thirty-two i n  a l l )  there i s  a separate 
routine that handles that particular operator. Each of one of these routines 
handles evaluation for a l l  appropriate scalar basetype (boolean, f l o a t ,  and 
integer) . 

5 . 6 . 3  ISD Scalar Location and Access 

The Internal System Description data structure contains storage for a l l  
of t h e  scalars i n  the system model. Storage for a scalar is bound t o  t h e  
d e f i n i n g  record i n  the ISD. Scalars associated w i t h  declare items a r e  
allocated i n  decl-t records and scalars associated wi th  block a t t r i bu te s  a r e  
allocated i n  attr-t records (inside of blocks). Scalar storage for t h e  one or 
more history values associated w i t h  l i n e s  a re  allocated i n  linked l i s t s  
connected to line-t records. 

Access and manipulation of scalar storage i s  handled in packages SASA and 
HIST. These routines are called mostly by the expression evaluation routines 
to load or s tore  values. Routines a lso ex is t  i n  these packages for  t h e  
reset t ing of i n i t i a l  object s ta tes  and t o  propagate values throughout t h e  
topography of the system model. 

5.7 : I O  Utili t ies 

A l l  input/output operations are performed with the standard family of A d a  
routines.  For purposes of m o d u l a r i t y ,  access to these routines is  itself 
compartmentalized into i t s  o m  package (package IOCP). 

A l l  f i l e s  used are  organized as basic sequential access text f i l e s  opened 
for either reading or for writing. F i le  formats used by t h e  RSP a r e  kept 
simple so as  t o  a l so  possible interfacing w i t h  other software development 
tools . 

- 87 - 



6. CONCLUS IONS AND RECOMMENDAT IONS 

6 . 1  Conclusions 

The central goal of this research effort is the exploration of techniques 
for the implementation of expert system programming for the domain of r e a l  
time dynamic systems. The work includes both an examination of an 
established, general purpose expert system shell approach (using C L I P S )  and a 
new language/interpreter approach (USDL/RSP) that i s  tailored for simulation 
and diagnosis of real  time dynamic systems. These two methods have some 
similarities, but also have important differences. 

The selected general purpose expert system she l l  approach employs a 
f a i r l y  large program, written i n  t h e  C language, that uses a powerful and 
general pattern mtching capability for inference processing. A drawback of 
t h i s  method i s  tha t  extensive compatational f a c i l i t i e s  a re  required for  
running the expert system shell, e i ther  i n  i t s  interpret ive mode or i n  i t s  
standalone application mode. Moreover, most shells are written i n  a computer 
language that i s  not yet well standardized and for which optimized compilers 
may not be readily available for those dedicated processors cammonly used for 
real-time onbard tasks. 

The USDL/RSP approach also employs a f a i r l y  l a rge  program, comparable i n  
size w i t h  a general purpose interpreter. However, t h i s  program i s  only used 
d u r i n g  the interact ive development phase (where plenty of computational 
resources are present) where size i s  not as important as a consideration as  it 
i s  during the production phase ( i n  a more restrictive embedded requirement) .  
Although not yet operational, the translator portion of the RSP program should 
produce compact, quick, and compilable Ada source for the target processor. 
The reasoning behind th i s  prediction i s  based upon the differences i n  the 
inference mechanisms involved: the extensive resource requirements of p a t t e r n  
matching of a general purpose shell versus the d i r ec t ,  no-search, programmer- 
directed ruleset  approach of the RSP. While the ruleset method may not be 
among the f i r s t  chosen for general purpose reasoning i n  general domains, i t s  
use O C  a standardized language (Ada) along w i t h  the speed and integration 
requirements of real time applications make i t s  a good candidate for  f u r t h e r  
deveiopent. 

The general purpose expert system shel l  approach requires extensive 
programming s k i l l s  by t h e  developer i n  order to  construct the system model. 
Usually t h e  general f lavor of programming i s  that  of the L I S P  computer 
language w i t h  a slight mixture of the constructs of a procedural language such 
as C .  Usage of a LISP s ty l e  i s  certainly appropriate for  problems tha t  
require search and pattern mtching where the system model and the inference 
mechanism used i n  reasoning about the system i s  not well known even t o  the 
domain experts, as mny years of a r t i f ic ia l  intelligence programing practice 
has demonstrated. iiowever, much of the power of expression may be wasted 
because a framework for the representation of elemental dynamic objects 
required for event monitoring and fault diagnosis i s  not readily available i n  
these general purpose shells. 

The RSP approach also requires considerable programming s k i l l s  by the 
developer. However, the User System Description Language i s  desisned wi th  two  
important features i n  mind: f i r s t ,  the U S D L  i s  expl ic i t ly  intended for the 
zodeling of dynamic systems; second, the USDL style i s  intentionally similar 
tc that of the A d a  lariguage. The result of the f i r s t  feature is  to  eliminate 

- 88 - 



excess baggage (and thus lessen chance for programing error),  the result of 
the second feature i s  t o  reduce the probable e f fo r t  required i n  t ra ining 
programers . 

The central conclusion of this investigation i s  that use of a dedicated 
language/interpreter i s  appropriate for applying expert system programing 
methodologies to the domain of onboard fault diagnosis and event monitoring 
a p p l i c a t i o n s .  Furthermore, we have identif  led the desirable knowledge 
representation and inference mechanism faci l i t ies  for such a dedicated real-  
time expert system she l l  and incorporated these feature into the U S D L / R S P  
design : 

- R S P  provides a framework for specifying a physical system d e l  which 
includes both the topological representation (elemental dynamic 
objects ,  physical interconnections between these objects) and the 
procedural representation (functional dynauuc system representation). 

- R S P  provides a hierarchical dynanuc representation mechanism allowing 
multiple hierarchical representations of a dynamic system a t  several 
levels of abstraction. For instance, such a representation mechanism 
can be used to look a t  a f l i g h t  control system as a single block w i t h  
p i lo t  inputs and actuator commands, or as interconnection of several 
interconnected dynamic objects such as l imiters ,  shaping f i l t e r s ,  
notch f i l t e rs ,  etc. 

- RSP provides the necessary tools i n  i t s  ruleset for building powerful 
inference strategies which can m e  up and down (elaborate statement) 
or horizontally ( c a l l  statement) w i t h i n  the specified knowledge 
hierarchy.  Such a mechanism can be used t o  construct top-down, 
bottoms-up or hybrid diagnosis strategies. 

6.2 &cmme.nda t ions 

The central  recommendation of t h i s  research i s  t o  cont inue  t h e  
examination and development of t h e  promising dedicated real-time expert system 
shell the USDL/RSP strategy. Such examination and development can be targeted 
towards specific goals : 

Goal: The application of the USDL/RSP approach to  a real world onboard 
f a c l t  diagnosis application. This goal means t h e  selection of a particular 
real-time application such as a reconfiguration strategy for a self-repairing 
f l i g h t  control system (Caglayan et a l .  1987), or a sensor failure detection 
and isolation system (Caglayan et  a i .  1988), or a fault  diagnosis system for a 
€ l i g h t  control system of a specific aircraft ,  development of an expert system 
based on the  USDLI’RSP approach for the selected application, and demonstration 
of the developed expert system i n  a real-time simulation. 

Such a goal i s  the real  t e s t  of the U S D L / R S P  method. Because of the 
successes rn meeting the in i t ia l  goals of t h i s  investigation, we believe that 
future exploration of the USDL/RSP i s  indicated, and that such exploration 
include a treatment of a real  world, real-time application. In order to 
achieve this goal, the following modifications would be needed t o  the R S D  
prototype design : 

- R Q  - 



Goal: Expansion of constructs in the User System Description Language. 
As currently specified, while the USDL 1s capable of extensive modeling 
efforts, it lacks several useful features commonly found in conventional 
languages: structured types (arrays and records), subprogram formal 
parameters, and a facility for separate compilation. The addition of these 
features would be a natural extension of the corrent effort as the current 
syntactic specification is designed with such extension in mind. 

Goal : Correction of certain deficiencies in the Rule Set Processor 
interpreter. RSP I is a partial implementation of the RSP prototype design. 
For instance, it does not provide interpretation for certain hierarchical 
models. Also, the RSP compilation occasionally emits spurious complaints 
about incorrectly perceived semantic source errors. An important extension to 
the RSP interpreter i s  to provide a -re comprehensive interactive debugging 
facility; such a facility should greatly increase developer productivity as 
have similar high level debugging tools for conventional programming 
languages . 

Goal: Implementation of a convenient system component library mechanism. 
Currently, the RSP program requires the developer to manually combine 
component specifications into a single source file prior to compilation. A 
much more desirable approach is to have the RSP program handle the librarian 
task of configuring s y s t e m s  that involve the reuse of software. This library 
mechanism of the RSP corresponds with the addition of a separate compilation 
facility in the USDL syntax. 

Goal: Implementation of the RSP translator mechanism. The current RSP 
program i s  not yet able to translate the Internal System Model into an 
standalone application source language program to be embedded onto a flight 
computer. This effort requires not only the programming of the ISD-source 
translator, but also the resolution of the interfacing issues involved in the 
porting of the expert diagnostic knowledge. 

- 90 - 



7.  REFERENCES 

Abbott, K.H., Schutte,  P.C., Palmer, M.T. and Ricks, W.R., " F a u l t f i n d e r :  A 
D i a g n o s t i c  Expert  System wi th  Graceful Degradation f o r  Onboard Airc ra f t  
A p p l i c a t i o n s ,  m o s i u m  on Ai rc ra f  t In t ezrt ed Moni t o r  i nz-sys t ems, 
Friedriechshaf en, W. Germany, Sept. 15-17, 1987. 

Braunston, L. ,  Parrell,  R . ,  Kant,  E., and Martin, N., P_r_ogramming E x p e r t  
lystems i n  OPSS: An Introduct ion t o  Rule-Based Programming, Addison- 
Wesley, Reading, MA, 1986. 

Brown, J . S . ,  B u r t o n ,  R . R . ,  a n d  B e l l ,  A . G . ,  "SOPHIE: A S o p h i s t i c a t e d  
Instructional Environment for Teaching Electronic Troub leshoo t ing ,  " Bolt 
Beranek and N e w m a n ,  Inc., Report No. 2790, Cambridge, MA, 1974. 

Buchanan, B .G. ,  and Feigenbaum, E .A. ,  "DENDRAL and Meta-DENDRAL: T h e i r  
Applications Dimension," Artificial In te l l igance ,  V o l .  I f ,  1978. 

Caglayan, A . K . ,  Rahnamai, K . ,  Moerde r ,  D . D .  and H a l y o ,  N., ( 1 9 8 7 )  " A  
H i e r a r c h i c a l  Reconfiguration Strategy for Ai rc ra f t  F l igh t  Control Systems 
Subjected to  Actuator Pailure/Surface Damage: APWAL-TR-87-3024, May 1987. 

Caglayan, A.K. ,  Godiwala, P.M. and S a t z ,  H.S., "User's Guide  to the FINDS 
Computet Program," NASA CR 178410, June 1988. 

Davis, R . ,  Shrobe, H., Hamscher, N., Wreckert, K., Sh i r ley ,  M. , and Polit, S.,  
"Diagnos i s  Based on D e s c r i p t i o n s  of S t r u c t u r e  and F u n c t i o n ,  " A A A I  
Proceedings, Carnegie-Mellon Univ. , Pit tsburg,  PA, August 1982. 

Davis, R., "Reasoning from F i r s t  Pr inc ip les  i n  Electronic  T r o u b l e s h o o t i n g ,  " 
I n t .  J .  Man-Machine Studies,  Vol. 19, pp. 403-423, 1983. 

Davis, R., "Diagnostic Reasoning from S t r u c t u r e  and Behavior  ," A r t i f  i c g l  
In t e l l i gence ,  Vol. 26, pp. 347-410, 1984. 

Davis, R . ,  "Diagnosis v i a  Causal Reasoning: Pa ths  of Interaction and t h e  

Davis, R . ,  "Knowledge-Based Systems: The V i e w  i n  1986," i n  A I  i n  t h e  1 9 8 0 s  
and Beyond - An MIT Survey,  edi tors  Crimson and P a t i l ,  The MIT Press, 
Cambridge, MA, 1987. 

Local i ty  Pr inciple ,"  Proceedings -1-83. 

--- -- 

Davis, K . ,  "D iagnos t i c  E x p e r t  System f o r  t h e  BlB,"  IEEE AES Magazine, April, 
1988. 

Disbrow, J . D . ,  Duke, E.L., and Regenie ,  V . A . ,  "Development of a Knowledge 
Acquis i t ion Tool for a n  Expert  System F l i g h t  S t a t u s  Monitor," NASA TM 
86802, January 1986. 

D u b ,  R . 0 . I  Gaschnig, J., Hart, P.E., Konolige, K. Reboh, R., Bar re t t ,  P., and 
Slocum, J .  , "Development of t he  PROSPECTOR Consultation System f b r  Mineral 
Exploration Inc., F i M l  Report, Project No. 6415,  SRI International I n c . ,  
Menlo Park ,  CA, 1978. 

Duke, E.L. and Regenie, V.A. "Description of an Exper imenta l  Expert System 
Fl ight  S t a t u s  mnitor," NASA TM 86791, October 1985. 

- 91 - 



Duke, E . L . ,  Regenie, V.A., Brazee, M .  , and Brumbaugh, R.W. , "An Engineering 
Approach to t h e  Use of Expert Systems Technology in Avionics 
Applications," NASA TM 88263, May 1986. 

Forbus, K.D., "Qualitative Process Theory," A.I. Memo No. 694, H.I.T. 
Artificial Intelligence Laboratory, Cambridge, MA, February 1982. 

Forbus, K.D., "Qualitative Process Theory, " Ph.D. Thesis, M.I.T., Dept. of 
Electrical Engineering and Computer Science, 1984. 

Forbus, K. , "Interpreting Observations of Physical Systems," IEEE Trans. on - SMC, VOL 17, NO. 3, my 1937. 

Forbus, K. "Qualitative Physics: Past, Present and Future," in Exploring 
Artificial Intelligence, Morgan Kaufnvan Publishers, 1988. 

Porgy, C.L., "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern 
Match Problem," Artificial Intelligence, Vol. 19, 1982. 

Govindaraj, T., "Qualitative Approximation Methodology for Modelling and 
Simulation of Large Dynamic Systems: Applications to a Marine Steam Power 
Plant," IEEE Trans. on SMC, Vol. 17, No. 6, 1987. 

Giarratano, J . C . ,  "CLIPS User's Guide ,  Version 4.1," A I  Sec t ion ,  NASA Johnson 
Space Center, 1987. 

Gupta, A. ,  "Parallelism in Production Systems: The Sources and the Expected 
Speed Up, " Expert Systems and their Applications, Fifth International 
Workshop, Avignon, Prance, 1985. 

Laffey, T.J., et. al., "Real-Time Knowledge Based Systems," AI Magazine, Vol. 
4, NO. 1, Spring, 1988. 

Malcolm, J.G. and Highland, R.W., Analysis of Built-In-Test (BIT) False Alarm 
Conditions, RADC-TR-81-220, Rome Air Development System, Griff iss, AFB,  
NY, 1981. 

.shlin, J.T., "Processes in Construction of Failure Management Expert Systems 
from Device Design Information," IEEE Trans. on SMC, Vol. Sk-17, -NO. 6, 
1987. 

Palmer, W.T. Abbott, K.H., Schutte, P.C., and Ricks, W.R., "Implementation of 
a Research Prototype Onhard Fault Monitoring and Diagnosis System," 1987 
Computers in Aerospace Conference, Wakefield, MA, October 7-9, 1987. 

-- 

Rasmussen, J., "The Role of Hierarchical Knowledge Representation in Decision 
Making and Systern Management," IEEE Trans on SHC, Vol. 15, No. 2, 1985. 

Regenie, V.A. and Duke, E . L . ,  "Design of an Expert-System Flight Status 
Monitor, " NASA Tn 86739, 1985. 

Schutte, P.C., Ahbott, K.H., Palmer, M.T. and Ricks, W.R., "An Evaluatioxf of a 
Real-Time Fault Diagnosis Expert System for Aircraft Applications," 
Prmeedings IEEE CDC, Los Angeles, CA, December 9-11, 1987. 

- 92 - 

. 



S h o r t l i f f e ,  E . H . ,  Cgzuter-based Medical C g p s l t a t i o n s :  X Y C I N ,  American 
Elsevier, N e w  York, NY, 1976. 

Shoham, Y . ,  Reasoning About Change: Time and Causation from t h e  Standpoint of 
Art i f i c ia l  Intell igence, The HIT Press, Cambridge, MA, 1988. 

Ste f ik ,  M . ,  Aikins,  J., Baker, R . ,  Benoit, J., Birnbaum, L . ,  Hayes-Roth, P .  
and Sacerdoti, E., "The Organization of Expert Systems: A P r e s c r i p t i v e  
Tutorial," Xerox Report No. VLSI-82-1, Palo Alto, CA, 1982. 

- 93 - 



APPENDIX A: USER SYSTEE DESaIPTION LANGUAGE SYNTAX SPECIFICATION 

-- , . Syntactic Specification for the User System Description Language -- , . USDL version 1.1 -- , . 05 Oct 1988 
-- <accept-prompt-string> ::= 
-- 

< s t r i ng -con s t an t > -- 
-- 
-- Caccept-statement> ::= 
-- accept Qccept-prompt -string> <variable> ; 
-- accept <variable> ; 

-- <additive-expression> : := 
-- cpref ix-expression> -- 

-- <additive-operator> : := 

-- 

Cpr ef ix-operator> cpr ef ix-expression> -- 
+ -- 

-- - -- 
-- <&vance-statsment> : := 
-- advance ; 

-- <assignment-statement> ::= -- <variable> := csxpression> ; 

-- <attribute-basetype> : := 
-- basetype cbasetype-indicator> 

-- 

-- 

c-ptr -- 
-- 
-- <attribute-body> ::= -- 
-- <attribute-ccnstanr> : := 

-- <elllptp 

-- cattribute-default> : := -- def au 1 t C 11 teral> 
-- cempzp 

-- cattribote-definition> ::= -- at t L' ibu te cat ti ibut e- id; is Cat tr ibut e-body> ; 

-- <attribtita-id> : := 
-- <identifier > 

-- cattribute-indication> : := 
-- <compor.ent-rd> . Qttriliute-i& 
-- cbasetype-indicator> ::= 
-- boolean 
-- float 
-- inEegrr 

<at tr ibut e-cons tant> ca ttribute-basetype cat tr ibut e-defaul t> -- 
constant -- 

-- 

-- 

-- 

-- 

-- 

-- 

- 93 - 



<boolean-literal> ::= 
f a1 se 
true 

<call-statement> ::= 
call cruleset-id> ; 

<component-body> ::= 
<component-item> 
<component-item> ccmponent-body 

<component-description> ::= 
<component-head> <coapponent-bodp <component- tail> 

<component-head> ::= 
block <coqonent-id> is general begin 
block <coqonent-id> is type <canponent-type-id> begin 

<component-id> : : = 
<identifier> 

-- <component-item> ::= -- cat tribute-definition> -- <line-def init ion> -- <subsystem-def ini tion> 

-- <component-tail> ::= 

-- end <component-id> ; 

-- 
end ; -- 

-- 
-- <coulponent-type-bodp ::= -- <component-type-it- -- <component-type-it- <coqonent-type-bcdp 

-- <component-type-description, ::= -- <component-type-head> <component-type-bodp <component-type-tail> 

-- <colPponent-type-head> : := -- 
-- 
-- <component-type-id> ::= -- 
-- <component-type-ite ::= -- <attribute-definition> -- <line-definition> 
-- csubsystem-defLnition> 

-- <component-type-tail> : := 

-- end <component-type-id> ; 

-- ccampound-statement> : := -- b q i n  <compound-statement-list> end : 

-- 

-- 

blocktype <component-type-i& is general begin 
blocktype <component-type-icb is type <component-type-ib> begin -- 
< id en ti f i er > -- 

-- 
end i -- 

-- 

-- 

- 95 - 



-- <compou.nd-statement-Irst> : := 

-- <statement> <coqiound-statement -lis t> 

-- <con)unctive-expression> ::= 
-- <relational-expressrow 
-- <relational-expressiow <relational-operator> <conyunctive-expression> 

-- <con~unctive-operator> ::= 

<stat emen t> -- 

-- 

-- 
and 
cand 
cor 
or 
xor 

-- 
-- 
-- 
-- 
-- 
-- 
-- <declaration-descriptioro : := 
-- declare <declaration-id> : <basetype-indicator> ; 

-- Cdeclarat ion-id> : : = 
-- <identifier> 

-- <declared-itun-indication> ::= 
-- <declarat ion-id> 

-- 

-- 

-- 
-- <drglt> : := 
-- 0 1 1 1 2 1 3 1 4 i 5 1 6 1 7 1 8 1 9  

-- <digit-sequence> ::= 

-- <dig1 t> 4igi:- sequence> 

-- <display-lshl-string> : := 
-- <string> 

-- <display-statemw.t> : := 
-- display <display-label-string> ; -- 
-- display <mrpr 5s sion> ; 

-- <el&rate-statement> ::= 
-- elaborate <component-id> using cruleset-id> ; 

-- <apt-* ::= 

<di gi t> -- 
-- 

-- 

display <di splay- label - s t ring> <express ion> ; 
-- 

-- 
-- 
-- 
-- <exit-statzment> ::= 

exit ; -- 
-- .~expngntial-expression> : := 
-- <pr Unary> -- 
-- .:exponent> : : = 
-- E + <digit-sequerice> 
--- E - <digit-sequence> 
-- E <digit-sequer.ce> -- 

- 96 - 



-- <expression> ::= 
-- <conjunct ive-expr es sion> -- <conjunctive-expression> <conjunctive-operaton <expression> 

-- <external-description> ::= -- external <external-id> is Cline-indication> ; 

-- <external-id> ::= -- 
-- <floating-literal> ::= 
-i uligit-sequence> . <digit-sequence 
-- <digit-sequence> . digit-sequence <exponent> 
-- <history-indication> ::= 
-- <component-id> . <line-id> . history [ <expressioru ] 

-- <identifier> ::= -- <letter> -- <letter> <letter-digit-underscore-sequence, 

-- cif-statement> ::= 
-- if <expression> then <statement> else <statement> end if; 
-- if <expression> then <statement> end if; 

-- <integer-literal> ::= -- 

-- 

-- 
< iden t i f i er > -- 

-- 

-- 

-- 

-- 
<di gi t - sequence> -- 

-- <letter> ::= 
-- a b i c  d e f g h i j k 1 

C D E P G H I J K L M  
-- 
-- 
-- 
-- 
-- <letter-digit-underscore> : := 
-- <digit> 
-- <letter> -- <underscore> 

-- <letter -digi t-under score- sequence> : : = -- 
-- 
-- Cline-basetype ::= 
-- basetype <basetype-indicator> 

-- 
<let t eriiigit -under scor e 
<letter -digit -undsr scor s, <lett ar -digit -under scoresequence> -- 

<-ptY> 

-- <line-bcdp ::= 
-- <line-mode> <line-basetype> <line-history> 

-- <line-definition> : := 
-- line <line-id> is <line-bodp i 

-- <line-history> ::= 
-- history <integer-literal> 

-- -- 

-- 

-- 

<-PtP -- 

- 97 - 



-- 
-- <line-id> ::= -- 
-- <line-indication> ::= -- <component-id> . <line-id> 
-- <line-mcde> ::= 
-- mode anode-indicator> 

<empty> 

-- <literal> ::= 
-- <boolean- li tera 1> 
-- <f  loat-literal> 
-- <integer - li terab 
-- <mode-indicator> ::= 

<id en ti f i er> -- 

_- 

-- 

-- 
in 
out 

-- 
-- 
-- 
-- <multiplicative-expression> : := -- <awnen t ial-expr es sion> 
-- <expcnential-expression> I unultiplicative-expression> 

-- <multiplicative-operator> : := 
-- 
-- 8 

i -- -- 
-- <null-statement> : := 

null ; -- 
-- 
-- <pathdescription> : := 
-- path froln <line-indication> to <line-indication> ; 
-- path <path-id> is from <line-indication> to <line-indication> ; 

-- qrsf ix-expression> : := -- 
-- 
-- <pref ix-operator> : := 

-- 
<mu1 t i p  lica t ive-express ion> 
<mu 1 t ip li ca t ive-expr es s ion> <mu 1 t i p  lica t ive-opera tor* <pr ef ix-expr ess ion> -- 

-- + 

not -- 
-- 
-- <primary> : := 
-- <li terab 
-- <var iab?e> 
-- i =expression ) 

-- <pulss-statement> : := 
-- pulse <icmponer.t-id> ; 

-- 

-- <read-statement> : := 
-- re& ; 
-- read <variable ; -- 

- 98 - 



-- <relational-expression> ::= -- <additive-expressioro -- <additive-expressiow <additive-operator> <relational-expression> 

-- <relational-operatar> ::= 
-- 
-- = 

/= -- 
< -- 

-- <r 

> 
>= 

-- -- 
-- 
-- <reset-statement> ::= 

reset ; -- 
-- 
-- <return-statement> ::= 

return ; 

-- <rule-bcdy, ::= -- 
-- <rule-body-declaration-sequence> ::= -- declaration-description> 
-- declaration-descriptio- <rule-body-declaratron-sequence> 

-- 
-- 

<rule-body-declarat ion-sequence> <rule-body- t es t> -- 

<emptY, -- 
-- 
-- crule-body-test> : := 
-- if <expression> then <statement> end if ; 
-- if <expression> then <statement> else <statement> end if ; 

-- <rule-description> : := -- <rule-head> <rule-bcdy> <rule-tail> 

-- <rule-head> ::= 
-- rule <rule-id> is begin 

-- <rule-rd> ::= 
-- <ident i f ier> 

-- <rule-tail> ::= 

-- end <rule-id> ; 

-- <ruleset-body> ::= -- <ruleset-body-declaration-sequence <ruleset-body-rule-seque~x~ 

-- <ruleset-body-declaration-sequence : := 
-- <declaration-description> -- <declaration-description> <ruleset-bodydeclaration-Sequence> 

-- 

-- 

-- 

-- 
end i -- 

-- 

-- 

<empty> -- -- 
-- <ruleset-body-rule-sequence> : := 

-- <rule-description> -- 
<-pty> 

<r u le-d e5 cr ipt i on> <r ul eset - M y -  ru le-s equence 

-- 

-- 

- 99 - 



i 

-- cruleset-desc:iptiom ::= 
-- cruleset-head> <ruleset-body> <ruleset-tail> 

-- <ruleset-head> : := 
-- ruleset cruleset-id> is begin 

-- <ruleset-id> ::= -- ciden t i f i er > 

-- cruleset-tail> : := 

-- end <ruieset-id> ; 

-- <statEment> ::= 

-- 

-- 

-- 
end ; -- 

-- 

<accept - s t a t emen t > 
<advance- s t at men t> 
<assignment-statement> 
<call -statement> 
<coeound-statement> 
<display- st at ement> 
celaborate-statanent> 
<exit-statement> 
<if -statement> 
<null-statement> 
<pulse-statement> 
<read - s tat emen t > 
<reset-statement> 
<ret urn -s tat emen t > 
<ur i t e-s tat emen t> 

- 100 - 



-- 
-- csystem-id> ::= -- 
-- csystem-item> ::= -- <component-description> 
-- <component-typedescription> 
-- <declaration-descriptio- -- <external-description> -- cpath-descr iption> -- <ruleset-descriptio- -- <syst emdescr iption> 

-- <system-tail> ::= 

-- end <system-i& ; 

-- <underscore> ::= 

c id en ti f i et> -- 

-- 
end ; -- 

-- 
-- - -- 
-- <user-system-descriptio- ::= 
-- <system-description> 

-- <variable> ::= -- <at tr rbute-indication> -- 
-- chistory-indication> -- <line-indicat ion> 

-- <write-statemer,t> : := 

-- 

declared -i t ~ID- indica tiow 

-- 
write ; 
write <expression> ; 
write <string> ; 
write <string> <expression> ; 

end 'of syntactical specification 

- 101 - 



APPENDIX B: USER INTERFACE SPECIFICATION 

The RSP ( R u l e  Set Pro jec t )  i s  an expert  system development program w i t h  
e x t e n s i v e  e m p h a s i s  on t h e  d e s c r i p t i o n ,  s i m u l a t i o n ,  and d i a g n o s i s  of 
topologica l ly  complex realtime systems. 

T h i s  appendix  describes t h e  R u l e  Set Project u s e r  i n t e r f ace .  The user 
i n t e r f a c e  i s  the in t e rac t ion  between t h e  RSP computer program and a user of 
t h e  s y s t e m ,  e i ther  performed w i t h  a n  i n t e r a c t i v e  t e r m i n a l  or v i a  batch 
processing. The i n t e r f a c e  o p e r a t e s  w i t h  a s t a n d a r d  character f i l e  stream 
s t y l e  t h a t  would be appropriate  for most t e x t  or iented terminals and also for 
t e x t  1/0 i n  a windowing environment. 

The RSP user i n t e r f a c e  i s  a command driven system. The RSP program first  
s i g n s  on t o  i n i t i a l i z e  t h e  i n t e r f a c e ,  and then  r e p e a t e d l y  reques ts  a n d  
p r o c e s s e s  u s e r  commnds. The RSP program terminates by one of the  following: 
an e x p l i c i t  user command, an  end of f i l e  c o n d i t i o n  on t h e  command i n p u t  
stream, or  by the  occurance of an abnormal operat ing event.  

T h e  use of a s imple  command d r i v e n  system i s  e a s y  to  l e a r n ,  c a n  be 
q u i c k l y  a n d  c o n f i d e n t l y  i m p l e m e n t e d ,  h e l p s  e n a b l e  RSP program host 
independence, and i s  e a s i l y  extendable. 

T h e  RSP program sign-on cons i s t s  of various program i d e n t i f i c a t i o n  items 
i n c l u d i n g :  program name, program v e r s i o n ,  t h e  t i m e  and date of p r o g r a m  
g e n e r a t i o n ,  and t h e  c u r r e n t  t i m e  and date. The i n t e n t  here i s  not j u s t  for 
t k e  sake of v e r b o s i t y  b u t  i n s t e a d  to  a id  i n  c o n f i g u r a t i o n  c o n t r o l  a n d  
def Fciency  r e p o r t i n g .  The  sign-on messages, a l o n g  w i t h  a l l  non-abnormal 
reporting, i s  wr i t ten  t o  t h e  s t a n d a r d  o u t p u t  t e x t  f i l e  stream i n  order t o  
allow f o r  high l eve l  r ed i r ec t ion  should the host operat ing system support f i l e  
r ed i r ec t ion .  

The RSP progran command cycle  i s  invokrsd after the  program sign-on. Each 
run t h r w g h  t h i s  cyc le  has the following ac t ions :  

1) A cormand primpt ": " (colon space) is output .  
2 )  A u s e r  RSP cam~pand l i n e  i s  read from the  input .  
3 )  The u s e r  ccppmand i s  parsed and checked for v a l i d i t y .  
4 )  The validated u s e r  cunmand i s  processed. 

The RSP program allows for use of a c o n f i g u r a t i o n  f i le .  If the  f i l e  
"config" PWists and i s  readable, the program w i l l  read and p r o c e s s  commands 
from t h i s  f i l e  immedia te ly  a f te r  t h e  program sign-on. For these coamands, 
both the  prompt and t h e  command are p t i n t e d  t o  t h e  standard o u t p u t .  The  
i n t e n t  i s  t h a t  i n t e r a c t i v e  o u t p u t s  of t h e  RSP system are iden t i ca l  for 
i d e n t i c a l  i n p u t s  i r regardless  of t h e  source of t h e  commands ( e i t h e r  a n  
i n i t i a l i z a t i o n  f i l e  or by manual input ) .  

A f t e r  the c-nds on t h e  i n i t i a l i z a t i o n  f i l e  ( i f  any) are processed, the  
normal i n t e r a c t i v e  cyc le  w i l l  comerice. The exception i s  that  i f  some command 
OF. t h e  i n i t i a l i z a t i o n  f i l e  caused the system to  terminate ear ly .  

E v e n t u a l l y ,  t h e  RSP program w i l l  comple te  command processing, e i the r  
because of an e x p l i c i t  command 3r by a n  abnormal o p e r a t i n g  e v e n t .  T h i s  
conc ludes  t h e  commana c y c l e  and p rov ides  f o r  normal program t e r m i n a t i o n  

- 102 - 



. 

. 

activit ies.  The program closes any open data f i l e s ,  reports in te res t ing  
operation s ta t i s t ics ,  and signs o f f .  

Each co-d line entered i s  parsed for validity immediately a f t e r  i t  i s  
entered. A valid corrmand line i s  composed of 
tokens separated by whitespace characters. A token is a sequence of non white 
space characters; a white space character is a character from the set (blank, 
tab, form f e d ] .  Token charcters are those w i t h  ASCII values from " ! "  (hex 
value 21) upto "-" (hex value 7e). Characters outside these values signify an 
error i n  the command line. 

Blank input  lines are ignored. 

The f i r s t  token on the i n p u t  command l i n e  should match one of the 
coamands i n  the  RSP program. I f  the f i r s t  token does not match an avai lable  
command, the line i s  considered to be erroneous and the user i s  encouraged to 
t r y  the "help" command for  assistance.  I f  the f i r s t  token does match an 
avai lable  command, the remaining tokens (command parameters), if any, are 
scanned for for consistancy with the indicated command. Note tha t  command 
token matching, l i k e  the r e s t  of t h e  text  processing activit ies of the RSP 
system, i s  f u l l y  case sensitive. 

Erroneous command l ines  a r e  diagnosed, reported, and then ignored. 
Unless an abnormal operating event has occurred, the command cycle i s  re-  
entered. 

RSP Conmand 

comaand 

clearf lag 
compile 

------- 

describe 
dr ibbl eof f 
dribbleon 

exit 
halt 
help 
l is t ing 
noop 
object 
q u i t  
setf lag 
preset 
simu late  
diagnose 
source 
status 
stop 
translate 

dump 

Table ( a l l  commands i n  lower case) 

Action 

Clear zero or more internal processing flags. 
Generate internal  representatLon of current source 
f i le .  
Present a brief descption of zero or rmre symbols. 
Deactivate auxillary output dribbling. 
Activate auxillary output dribbling. 
Produce RSP program dwelaper diagnostic f i l e  dump. 
Terminate RSP processing (preferred form). 
Terminate RSP processing. 
Present a brief description of available RSP comnands. 
Specify an output f i l e  for l ist ing purposes. 
No operation. 
Specify an output t a t  f i l e  for object processing. 
Terminate RSP processing. 
Set zero or more internal processing control flags. 
Preset inter representation.?? 
Simulate internal representation. 
Diagnose internal representation. 
Specify an input text f i l e  for source processing. 
Present a brief status report. 
Terminate RSP processing. 
G e n e r a t e  o b j e c t  o u t p u t  based upon i n t e r n a l  
representation. 

-----I 

- l G 3 -  



RSP Processing Control 

Option 

debug 
tr-source 
tr-token 
verbose 

------ 

Flags (Options) : 

Description (action when set)  

Enables developer debugging operations. 
Trace: source echo to console 
Trace: token echo to console 
Enables increased reporting of RSP internal operations. 

----------- ------------------ 

ComDand Description: clearflag 

The "Cleaiflag" command is used to clear (set  to false) zero or more RSP 
internal  f lag variables. The RSP system has several u s e r  accessible f lags  to 
control various aspects of processing. The current flag values can be printed 
w i t h  t h e  " s t a t u s "  command. t'ser accessible f lags  can be set  w i t h  t h e  
"setflag" comnand. 

The clearf lag commarid takes zero or  more additional parameters; each 
parameter i s  the  name cf an internal user accessible flag. 

Comand Description: compile 

T h e  "compile" command i s  u s e d  to generate a complete  i n t e r n a l  
representation of t h e  user system description found on the indicated source 
f i l e  (established by a pr ior  "source" command). T h e  compile command 
process ing  f i r s t  performs a syntactical  check i d e n t i c a l  t o  t h e  "check 
comnand". I f  no errors are detected, an internal interpretable representation 
of t h e  user system i s  constructed i n  memory and i s  init ialized for either 
simulation ( see  the "simulate" command) o r  f o r  t r a n s l a t i o n  ( s e e  t h e  
"translate" corrmand) . 

The compile ccmmand takes no additional paramters; t h e  source, l i s t i n g ,  
and o b j e c t  f i l e s  should a l r eady  be specified w i t h  previous "source", 
"listing", ard "cbject" comnands. 

C0wt.d Descript i cn  : describe 

The "describe" comnand 1s used to present information about zero o r  more 
symbols. The informative symbol descriptions a r e  generated fran internal 
informtion resultirig from a previous compile command. The i n t en t  is t o  
provids a helpful feature fo r  controlled access into the RSP system symbol 
table mc!!anism. 

The describe commznd thkes zero or more parameter tokens; each token i s  
an idectifier found i n  the RSP symbol table. 

Comand Description : dra-ose 

The "diagnose" coma.nd provides for the internal  diagnosis of t h e  user 
s y s t e a  descption by interpretat ion of the corresponding data  s t ruc ture  
resuiting from compilation. A correct, compiled user system description mus t  
already exist. 

. 

The diagnose cowand takes no additional parameters. 

-104  - 



Comaand Descrlption: dribbleoff 

The "dribbleoff" command i s  used to  deactivate the  output  d r i b b l e  
f a c i l i t y .  After tne dribble is deactivated, console output i s  not longer 
echoed t o  the output dribble f i l e .  

The dribbleout  coamand takes no additional parameters. 

Conmand Description: dribbleon 

The "dribbleon" command i s  used to activate the  output dribble fac i l i ty .  
After the dribble i s  activated, console output is echoed to  t h e  output dribble 
f i l e .  User comnand l i n e  input i s  also echoed to the dribble f i l e .  

The dribbleout comPand takes a second optional parameter, the name of the 
d r ibb le  f i l e  t o  receive the echo of t h e  console output. I f  M additional 
parameter i s  specified, the f i l e  name "drihble" i s  used .  In either case, t h e  
selected output f i l e  i s  cleared prior to use. 

Comnand Description: dump 

The "dump" comnand is used to provide a RSP system diagnostic dump onto a 
This feature is intended only for use by the RSP project  development f i l e .  

staff . 
The dump comaand takes an optional second parameter: the name of t he  f i l e  

to receive t h e  dum?. If  no f i l e  name is  present, the f i l e  "dump" receives the  
diagnostic dump. 

Comnand Description: exit 

The "ex i t "  comPand i s  used to terminate execution of t h e  RSP program. 
The processing of t h i s  command concludes the  command cycle processing and 
in i t ia i tes  XSP system noma1 shutdown operations. Synonyms for  t h i s  command 
are: " P a l t " ,  ''quitnl and "stop". 

The exit  comPand takes no additional parameters. 

Cornand Description: halt 

The "halt" comand i s  a synonym for the "exit" compand. 

Comnand Description: help 

The "help" command is used t o  provide a b r i e f  d e s c r i p t i o n  of t h e  
available conmands of the RSP program user  interface. 

The help compand takes no additional parameters. 

Cornand Description: l is t ing 

The "list ing" c m n d  i s  used to specify u1 output tex t  f i l e  t o  recieve 
t h e  l i s t i n g  of the user system description produced by t h e  "translate" 
comnand . 

-105 - 



The l i s t i n g  command takes an optional second parameter: the name of the 
f i l e  upon which user system description l i s t i n g  i s  written. I f  no second 
parameter i s  present, the nzme "listing" i s  used for the output l ist ing f i l e .  

Comnand Description: o b j k  

The "object" command i s  used to  specify an output text f i l e  to recieve 
the Ada source code produced by the "translate" comnand. 

The object command takes an optional second parameter: the name of the 
f i l e  upon which generated Ada realtime code i s  w r i t t e n .  I f  no second 
parameter i s  present, the name "object" i s  used for the output object f i l e .  

Conmand Description: preset 

The "preset" command provides for  t h e  i n t e r n a l  presetting of t h e  usef 
system descption by interpretat ion of the corresponding data  s t r u c t u r e  
resul t ing from compilation. A correct, compiled user system description must 
already exist. 

The preset compand takes no additional parameters. 

Colnnand Description: quit 

The "qui t"  comnand i s  a synonym for the "exi t "  comoand. 

Conmand Description: setflag 

The "setf lag" command is used to  se t  ( s e t  t o  t rue)  zero or more RSP 
internal flag variables. The RSP system has several user accessible f lags  t o  
control various aspects of processing. The current flag values can be printed 
w i t h  the -status" comnand. User accessible flags can be cleared wi th  the 
"clearflag" command. 

The se t f lag  command takes zero or more additional parameters; each 
additional parameter i s  the name of an internal user accessible flag. 

Compand Description: simulate 

The  "simulate" command provides for the internal sbulation of the user 
system descption by interpretat ion of the corresponding da ta  s t r u c t u r e  
resu l t ing  frcm compilation. A correct, compiled user system description must 
already exist. RSP simulation provides a rich,  comprehensive, and user- 
directed examination of the described *system including i t s  user-supplied. 
simulation ruleset. 

The simulate conmand takes no additional parameters. 

Command Description: source 

The "source" command i s  used t o  specify the text f i l e  that contains a 
user system description KO be processed by the RSP program. 

The source command takes an optional second argument,: the name of the 
input  f i l e  that contains the user systern description. I f  no second argument 
i s  supplied, the name "source" w i t h  be used for the input  source f i l e .  

-106 - 



Comnand Description: status 

- .  

z 

The "status"  command i s  used to  present a brief status report about the 
current state of the RSP system. The report contains items such as: the names 
of the currently associated f i l e s ,  the values of the user accessible flags 
(options), the current state of the internal user described system, and the 
current resource utilization factors. 

The status comPand takes no additional parameters. 

Conmand Description: stop 

The "stop" copmand is a synonym for the "exi t"  coamand. 

ComDand Description: translate 

The "translate" cotlllpand is used to generate a realtime diagnostic expert 
system from the  i n t e r n a l  representation of the user described system into Ada 
source code. A correct compiled description must already ex i s t ,  a s  must a 
specified output object file. 

The translate command takes no additional parameters. 

- 107 - 



APPENDIX C: RSP PROTOTYPE ADA SOURCE FILES 

rsp.a:  
Main program (procedure r s p )  

rsp-archgkg-s .a and rsp-arch-pkg-b.a: 
User System Description a rch i t ec tu re  def in i t ions / resources  

rsp-comagkg-s.a and rsp-caPm-pkg-b.a: 
User comaand knowledge 

rsp-conrpgkg-s .a and rsp-ccmp-pkg-b.a: 
User System Description recursive descent parsing (components) 

rsp-contgkg-s.a and rsp-contgkg-b.a: 
Control rou t ines  (ccmmand dispatch) 

rsp-def sgkg-s .a and rsp-def s-pkg-b.a: 
General d e f i n i t i o n s  (constants ,  types) 

r s p  - descgkg-s .a  and rsp-descgkg-b.a: 
User System Description recursive descent parsing (component d e s c r i p t o r s )  

rsp-dpcrgkg-s.a and rsp-dpcrgkg-b.a: 
Comarand processing (dispatch target rout ines)  

r s p  - dumpgkg s.a and rsp-dumpgkg-b.a: 
Diagnostic d u q  resources 

rsp-duplgkg-s.a and rsp-duplgkg-b.a: 
User System Description substructure dupl icat ion 

rsp-errsgkg-s .a and rsp-errsgkg-b.a: 
User System Description parsing/lening error report ing 

rsp-evalgkg-s.a and rsp-eval-pkg-b.a: 
User System Description in t e rp re t a t ion  (expression evaluation) 

rsp-execgkg-s.a and rsp-execgkg-b.a: 
User System Description in t e rp re t a t ion  (main l i n e  system execution) 

r s p  - exprgkg  s.a and rsp-exprgkg-b.a: 
User System Description recursive descent parsing (expressions)  

rsp - f indgkg-5.a  and rs?-findgkg-b.a: 
Pos t - t rans la t ion  User System Description probe/fetch 

r s p  - formgkg-s.a and rsp-formgkg-b.a: 
G e t t e r a l  formatting resources 

r s p  - his tgkg-s .a  and rsp-histgkg-b.a: 
User System Description h i s to ry  scalar access 

rsp-iocpgkg-s.a and rsp-iocp_pkg-b.a: 
I/O choke p o i n t  routines and f i l e  in fo rma t ion  ( a l l  i n p u t  and output  
opera t ions)  

r s p  - langpkg-s.a and rsp-langgkg-b.a: 
User System Description language syntac t ics  

r s p  - leugkg-s .a  and rsp-lwrgkg-b.a:  
User System Description lexigraphical  scanner 

r sp-li s t g k g - s  .a and r sp-lis  tgkg-b. a : 
User System Description l i s t i n g  processing 

rsp-optngkg-s.a and rsp-optn-pkg-b.a: 
Program opt ion knowledge 

rsp_parsgkg-s.a and rsp2arsgkg-b .a :  
User System Description recursive descent parsing (main l i n e )  

r s p p t h g k g - s  .a and rspgath-pkg-b.a: 
User System Description recursive descent parsing (paths) 

rsp - pri31gkg-s .a and r spgr imjkg-b . a :  

r s p  - r se tgkg- s . a  and rsp-rset-Dkg-b.a: 

rsp-rulegkg-s.a and rsp-rule-pkg-b.a: 

User System Description recursive descent parsing 

User System Description recursive descent parsing 

primary items) 

rulesets 1 

, 

- lbkl - 



User System Description recursive descent parsing ( rules)  

User System Description in t e rp re t e r  storage a l loca t ion  and scalar access 

User System Description dec lara t ive  i d e n t i f i e r  scope processing 

User System Description recursive descent parsing (statements 1 

User System Description recursive descent parsing (systems) 

General u t i l i t i e s  

User System Description recursive descent parsing ( ex te rna l s )  

rsp-sasagkg-s.a and rsp-sasagkg-b.a: 

rsp-scopgkg-s .a and rsp-scop-pkg-b.a: 

rsp-stmtgkg-s.a and rsp-stmt-pkg-b.a: 

r s p  - sys tgkg-s  .a and rsp-systgkg-b.a: 

rsp-uti lgkg-s.a and rsp-utilgkg-b.a: 

r s p-xt rngkg-s  .a and r sp-x tr n-pkg-b . a : 

- 109- 



NASA NMlsmrerm Report Documentation Page 
S e U ~ 8 m  

1. Report No. I 2. Gowmnmt Accrrion No. I 3. Rlcipiont’a Catalog No. 

7. A u t M a )  

S.J. Edwards and A.K. Caglayan 

I I I CR-179441 

8. Padonning Organization Report No. 

H- 1540 

10. Work Unit No. 

RTOP 505-66-71 

I I 

4. T i  and Subtitle I 5. R- Data 

9. P u ( m  0rg.nkJtbIl N u n  Ud Addnu 
Charlcs River Analytics Inc. 
55 Whcclcr Street 

Expcrt Systems for Real-Timc Monitoring and 
Fau 1 t Diagnosis 

11. Contract or Gmn No. 

NASZ- 12725 

I April 1989 

17. K y  Words (Suggertod by Aurhoda)) 
Control systcms 
Expcrt systcms 
Fault dctcction 
Fault isolation 

6. Performing Organiition Cod. * 

18. Dimkrh snwnnc 
Unclassi ficd-Unlimitcd 

Subjcct category 63 

19. Security Classif. (of this report) 20. Sacurity Unaaif. (of this pqp1 21. No. of pegm 
Unclassi ficd Unc 1 as si ficd 119 

1 

Cambridge, Massachusctts 02138 
13. Typo of R.pon md Pwiod Covmd 

Contractor Report-Final 12. Spon&ning Ag.ncv Nmm and Address 

22. Price 
A06 

National Aeronautics and Spacc Administration 
Washington, D.C. 20546 

15. Suppbmmtnry NO- I 
NASA Tcchnical Monitor: 
Rcscarch Facility, Edwards. California 93523-5000. 

E. LCC Dukc, NASA Amcs Rcscarch Ccnter, Drydcn Flight 

16. Abstract 

Thc aini of this study is to invcsiigatc mcthods for building rcal-time onboard expert 
systcrns and to dcmonstratc thc usc of expcrt systcms technology in improving the 
pcrformancc of currcnt rcal-tinic onboard monitoring and fault diagnosis applications. 
The potcniial applications of ihc proposcd ;rcscarch includc an expert system environ- 
mcnt allowing thc inicgraiion of cxpcrt systcms into convcntional time-critical applica- 
tion solutions, a grammar for describing thc discrete cvcnt bchavior of monitoring and 
fault  diagnosis systcms, and thcir applications to new rcal-time ha’rdware fault diagnosis 
and monitoring systcms for aircraft, 

I 
NASA FORM 1m OCT f#3 

I L 

* F o r  stile b y  t h e  Ntitioiitil Tc.clrriicirl I n  forttintion Serv i ce ,  Spr ingf i e ld ,  V i r g i n i a  22161. 


